Particle Identification at the PANDA/FAIR experiment using DIRC and RICH detectors

A. Hayrapetyan on behalf of the PANDA Cherenkov Group

Bundesministerium für Bildung und Forschung

Facility for Antiproton and Ion Research

Facility for Antiproton and Ion Research FAIR

PANDA Objectives

PANDA Objectives

In all cases practically one needs to have PID

For all species (y, e, μ, π, k, p)

As the kaon identification is the most challenging , here

their anticipated phase space

PANDA Objectives

In all cases practically one needs to have PID

For all species (y, e, μ. π. k. n)

arXiv:0903.3905v1 [hep-ex]

As the kaon identificat

their anticipated phase

Strong Interaction Studies with Antiprotons

PANDA

(AntiProton Annihilations at Darmstadt)

PANDA Collaboration

Strange Baryons Spectroscopy, Polarisation To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal $\overline{P}ANDA$ detector will be build. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed $\overline{P}ANDA$ detector is a state-of-theart internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range.

This report presents a summary of the physics accessible at $\overline{\mathsf{P}}\mathsf{ANDA}$ and what performance can be expected.

Details see here

The PANDA detector

The PANDA Cherenkov Detectors

The BARREL DIRC

• See Jochen Schiwening talk in this session

The Forward RICH

A few layer of Aerogel, Mirrors and Photon detector area outside of acceptance See A. Barnyakov talk next for more

The Prototype of FRICH tested at BINP and CERN

Aerogel produced at BIC SB RAS in cooperation with BINP Novosibirsk

4-layer aerogel

- n_{max} = 1.046
- Thickness 37.5 mm
- Calculated focal distance 200 mm
- Hermetic container with plexiglass window to avoid moisture condensation on aerogel

Photon detector , Philips Digital Photon Counting (PDPC) https://www.digitalphotoncounting.com

Square matrix 20x20 cm²

- Sensors: DPC3200-22-44
- 3x3 modules = 6x6 tiles = 24x24 dies = 48x48 pixels in total
- 576 time channels
- 2304 amplitude (position) channels
- 4 levels of FPGA readout: tiles, modules, bus boards, test board

The FRICH Prototype results

Ring 2D distribution for P=6 GeV/C(left) and ring radius distribution for P=1 GeV/C Momentum beam measured by FRICH prototype at CERN T9 test beam

Novel Endcap Disc DIRC(EDD) will be built by Giessen

http://www.uni-giessen.de/dueren

The working principle

One can calculate the Cherenkov angle analytically, hence EDD could be a part of online trigger at any level

The first full size EDD

prototype at CERN T9 PID probabilities

- radiator made of float glass
- FELs made of acrylic glass
- photo sensors: MA-PMT with 16 strips
- mixed hadron beam at CERN

One can see that by enough hits the misidentification is then negligible

The hit pattern shows what we call "SMILE"

Moving in EDD final design direction

Radiator

Borofloat Glass ---- fused Silica

FEL

Plexiglas

Quartz with prism With optic bonding

Photon Detector

MaPMT(16 channels)---MCP-PMT (>=300 channels)

Readout FEE

FPGA based channels (256 single edge, 192 with ToT) TRB3 TOFPET ASIC compact design 8X128=1024 channels

New prototype

finer scaling

The importance of the Filter

In Silica produced Cherenkov Photons Number Against wavelength –>

Pions

Kaons

Protons Cherenkov angle against momentum

mirror prism z(φ') filter MCP-PMT ω' particle track

λum

The Endcap DIsc DIRC design

Full Weight ~ 450 kg For 1 Quadrant ~ 85 kg Quadrants 4 **ROMs** 96 = 4X3X8(Readout Modul) Photon detection area ~600cm² **FELs** 288 = 4X3X8X3(Focusing Element) Readout Channels ~30k free running readout system Wavelength Filters ~ 100 or New "green" photocatode MCP

We are waiting (per track) We promise ~22 detected hits

>3 s.d. for π/K separation till 4 GeV/c momentum

The EDD Read Out Module

EDD final design

Finalizing the specifications , algorithms, TDR for a EDD Quadrant readiness for Phase1, 2018 new Testbeam at T9

The complete design in CAD

The Time-lines

Barrel DIR	С	EDD	FRICH
2018	component procurement	2018 R&D fine tuning	2018 TDR expected
2019-2021	bar box and readout module Assembly	2018-2021 1st Quadrant production	Mirror layout optimization in 2D
2022-2023	installation in PANDA Hall	2022-2023 Installation of First Quadrant	MC simulation PANDAROOT
2023-2024	commissioning with cosmic and beam	2023-2024 commissioning	Aerogel Optimization
TDR appro	ved(arXiv:1710.00684)	2025 completion of remaining 3 Quadrants	Photon detector investigation

Сипрhшկшլпւթյпւն Ուշադրпւթյшն hшմшр Thanks for your attention Danke für ihre Aufmerksamkeit Спасибо за внимание