FARICH system for Super c- τ Factory.

A. Barnyakov

Budker Institute of Nuclear Physics

Novosibirsk, 27th May 2018

PID system requirements

FARICH method 3

Protoypes & beam tests results 4

Photon detectors 5

- 1. CVC
- 2. Inner tracker
- 3. Drift chamber
- 4. PID system
- 5. Calorimeter
- 6. SC coil (B~1 T)
- 7. Yoke and MU system

PID system sketch and requirements

System sketch

Requirements

High PID quality

- π/K -separation from 0.6 to 2.5 GeV/c (i.e. for *D*-meson mixing study)
- μ/π -separation from 0.4 up to 1.5 GeV/c (rare τ -lepton decays i.e. $\tau \rightarrow \mu \gamma$)

Aerogel

Main aerogel properties:

- Refraction indices 1.006÷1.20;
- Inner surface 800 m^2/g ;
- $L_{abs}(400nm) = 5 \div 7 m;$
- $L_{sc}(400nm) = 4 \div 6 cm;$

Aerogel production in Novosibirsk

- It started in 1986 (IC&BINP);
- Aerogel for threshold counters:
 - n=1.008 for DIRAC-II (PS-CERN);
 - n=1.05 for KEDR (VEPP-4M);
 - n=1.13 for SND (VEPP-2000).
- Aerogel for RICH counters:
 - n=1.03 for LHCb (LHC-CERN);
 - n=1.05 for AMS-02 (ISS) & CLAS-12 (J-Lab);
- Modern production activity:
 - Blocks dimensions $200 \times 200 \times 30(20)$ mm;
 - $L_{sc} \ge 4.5 \text{ cm};$
 - 2 m²/year aerogel;
 - Multilayer (2÷6) monolithic samples have been producing since 2004.

Aerogel structure

$\Delta \Theta_c$ for π and K.

Bands correspond to chromatic dispersion in $350 \div 700$ nm.

Lower refractive index lead to lower number of Cherenkov photons. To increase N_{phot} without angle resolution degradation focusing is needed. Proximity focusing approach with multilayer aerogel (FARICH) is suggested.

Proximity focusing single layer RICH

Simulation results: n=1.05, thickness 3 cm, L=20 cm, QE(MPPC, Hamamatsu), pixel 3×3 mm, pitch 3.2mm.

Proximity focusing multilayer RICH

Simulation results: $n_{max}=1.05$, thickness 3 cm,

L=20 cm, 4-layer aerogel.

1^{st} FARICH prototype <u>Prototype with</u> CPTA MRS APDs BINP e⁻ test beam in 2011

32 CPTA MRS APDs with active pixel size 2.1x2.1mm²

4-layer aerogel focusing at 62 mm n₁=1,050 t₁=6,2mm n₂=1,041 t₂=7,0mm n₃=1,035 t₃=7,7mm n₄=1,030 t₄=9,7mm Size: 100x100x31mm³ L_{sc}(400nm) = 43mm

Main results

- Effect of focusing was demonstrated:
 - σ_R =1.1 mm for 4-layer aerogel t=30 mm;
 - σ_R =2.1 mm for 1-layer aerogel t=20 mm;

2nd FARICH prototype PDPC-FARICH

Beam test at CERN PS/T10 in 2012

- Positive polarity: e^+ , μ^+ , π^+ , K^+ , p
- Momentum: $1 \div 6 \text{ GeV/c}$
- Trigger: a pair of sc. counters 1.5×1.5 cm² in coincidence separated by ~3 m
- No external tracking, particle ID, precise timing

• 4-layer

- $n_{max} = 1.046$
- Thickness 37.5 mm
- Focal distance 200 mm

DPC matrix 20×20 cm

- Sensors: DPC3200-22-44
- 3×3 modules = 6×6 tiles = 24×24 dies = 48×48 pixels
- 576 time channels
- 2304 amplitude (position) channels
- Operation temperature is -40°C to suppress dark count rate
 - Dead time is 720 ns
 - $DCR(+25^{\circ}C)\approx 10 \text{ Mcps/sensor}$ single photon detection is not feasible!
 - DCR(-40°C) \approx 100 kcps/sensor inefficiency is 7%

A. Barnyakov

A. Barnyakov

3^{rd} prototype generation to:

- Determine critical moments in focusing aerogel production;
- Define optimal photon detector type and producer for SCTF;
- Find solution for readout electronics.

 10×16 pixel SiPM matrix.

- SiPM matrix + Discr. + TDC
- SiPM matrix + ASIC (integrated Discr.& TDC)
- HAPD + readout electronics
- MCP PMT + readout electronics

 $3{\times}64$ anodes PMTs.

Photon detectors

The general candidates is SiPMs:

- Analog SiPM:

Advantages:

- Magnetic field immunity
- High PDE
- Acceptable DCR at room temperature
 Disadvantages
- Especial designed electronic is needed
- Low radiation hardness
- Digital SiPM

Advantages

- Magnetic field immunity
- Digitizing electronics is integrated
- Timing resolution ~ 50 ps

Disadvantages

- Lower PDE
- Low radiation hardness
- Operation at 20÷40°C to reduce DCR

A.Yu.Barnyakov

Photon detectors

Optional candidates:

- HAPDs:
 - Magnetic immunity to axial fields
 - Radiation hardness is enough for SuperB factories
 - Readout electronics is developed
- MCP PMTs
 - Magnetic immunity to axial fields
 - PE collection in 2 times smaller in magnetic field 1T&45°
 - Radiation hardness is enough for SuperB factories
 - Readout electronics is developed
- Possible solution:
 - MCP PMTs or HAPD endcap part of the system
 - (D)SiPM barrel part of the system

- Focusing effect was demonstrated with monolithic 4-layer aerogel in 2011.
- π/K -separation $\geq 4\sigma$ up to 6 GeV/c and μ/π -separation $\geq 5\sigma$ at 1 GeV/c were obtained with prototype based on 4-layer aerogel and 20×20 cm pixel matrix from DPC Philips in 2012.
- PID technique based on focusing aerogel now is used in Belle-II experiment.
- SiPM have good tolerance to magnetic fields but radiation tolerance could be not enough for SCTF.
- There several option of photon detectors with better radiation tolerance but they are able to work only in axial magnetic field
- We need to estimate radiation flux to make right chose of photon detectors.
- To optimize FARICH system construction and compare different option we are going to start simulation FARICH system response to the physics processes.