Crystal calorimeter

B.Shwartz, Budker Institute of Nuclear Physics, Novosibirsk State University

Super-charm-tau factory, BINP, 2018

27.05.2018

1

Introduction

The main tasks of the calorimeters

detection of gamma-quanta and other neutral particles with high efficiency Photon and electron energy measurements photon coordinates determination electron/hadron separation neutral trigger and total energy trigger signal generation

Short radiation length (high Z and density) High output signal **High collection** efficiency for the scintillation light or ionization **Radiation tolerance Consistency with the** existing photosensors Availability of a large volume of

Super-charm-tau factory, BINP, 2018 material

Crystal calorimeters for medium energy (20 MeV~10 GeV) CLEO, Belle, BaBar, BES III

Acceptance close to 4π .

Usage of alkali-halide crystals with highest light output - CsI, NaI.

The calorimeter thickness is 15-17 X₀.

Transverse crystal size is 1-1.5 R_M.

The energy resolution is about 2% at 1 GeV. This dominated by the rear leakage providing the main E^{-1/4} dependence with the "technical" contribution from the material in front of the calorimeter and calibration

The position resolution is about

5 mm/E^{1/2}

Alkali-halide crystals for precision calorimetry

Detector	Crystal	Crystal	Thicknes	Total	$\sigma_{\rm E}/{\rm E}$, %	Start	Lab.
	type	number	S	mass,	%@E(GeV	year	
			\mathbf{X}_{0}	ton)		
Crystal Ball	NaI(Tl)	672	15,7	4,2	2,7 (1)	1977	BNL
CLEO-II	CsI(Tl)	7800	16,2	30	2 (1)	1990	Cornel
CMD-2	CsI(Na)-	892	8,1	2,4	9 (0,5)	1992	BINP
	(Tl)						
SND	NaI(Tl)	1620	13,5	3,5	5 (0,5)	1995	BINP
KTeV	CsI, pure	3256	27	9	1 (1)	1995	FNAL
KEK-E246	CsI(Tl)	768	13,5	3	2,8 (0,2)	1996	KEK
PSI - $\pi\beta$	CsI, pure	240	13	1	2,5(0,07)	1996	PSI
WASA	CsI(Na)	1020	16,2	3,8	2 (1)	1998	Uppsala
KEDR	CsI(Na)	1312	16,2	3,2	2 (1)	1998	BINP
Belle	CsI(Tl)	8636	16,2	43	2 (1)	1999	KEK
BaBar	CsI(Tl)	6580	16,2	30	2 (1)	1999	SLAC
BES III	CsI(Tl)	6240	15.1	26	2.5(1)	2008	Beijing
CMD-3	CsI(Na)-	1152	8.1	2.7	4 (1)	2010	BINP
	(Tl)		(15.3)				

Belle II Detector (in comparison with Belle)

Belle ECL

BELLE

lectronics noise σ~200 keV

- Calorimeter successfully worked for more than 10 years since 1999 to 2010
 - All 8736 channels are operable (even after great earthquake of 2011)

0.08

0.10

0.12

It demonstrated high resolution and good performance.

BINP, 2018

0.14

0.16

0.18

 M_{π} (GeV/c²)

Energy resolution

Physical reasons – fluctuations of the leakage of the energy

 Technical reasons – nonuniform response, passive material, photoelectron statistics, electronics noise, etc.

 Energy resolution vs energy
 Test beam (Belle)

 is approximated as:
 2

$$\frac{\sigma_E}{E} = \frac{\sigma_1}{\sqrt[4]{E}} \oplus \frac{\sigma_2}{\sqrt{E}} \oplus \frac{\sigma_3}{E} \oplus \sigma_0$$

 σ_1 - rear leakage

 σ_2 - side leakage, back leakage photoelectron statistics

 σ_3 - electronics noise, dark current noise pile-up noise

 σ_0 - nonuniformity, calibration, rear leakage

Super-charm-tau factory, BINP, 2018

What is optimal calorimeter thickness?

Super-charm-tau factory, BINP, 2018

Calorimeter angular resolution

Photon angles (or coordinates) in the crystal calorimeters are measured usually as corrected center of gravity of the energy deposition:

$$\theta_{\gamma} = \frac{\sum \theta_{i} E_{i}}{\sum E_{i}} F_{\theta}(\varphi, \theta, E) \qquad \varphi_{\gamma} = \frac{\sum \varphi_{i} E_{i}}{\sum E_{i}} F_{\varphi}(\varphi, \theta, E)$$

Correction functions (F) can be usually written as a function of one of the angles and energy.

Super-charm-tau factory, BINP, 2018

Angular resolution depends on the energy and the calorimeter granularity.

A possibility of the drastical improvement of the angular resolution will be considered in the V.Shebalin's talk

Principle limitation of the shower position resolution comes from the number of particles in the shower.

$$\sigma_r pprox rac{R_M}{\sqrt{N_{tot}}} = rac{R_M}{\sqrt{E_{\gamma}/E_{cr}}}$$

where E_c is critical energy. This gives for $E_{\gamma} = 1$ GeV, $\sigma = 4$ mm for Csl

Super-charm-tau factory, BINP, 2018

Calorimeter performance in a view of the luminosity increase –radiation background.

Radiation damage of the crystals: at 1000 fb⁻¹ at Belle the absorbed dose reached of about 500 rad in the most irradiated crystals. In the most loaded part the

light output degradation is

. Beylin *et al.*, Nucl. Instrum. Ieth. A 541, 501 (2005),

Basically – no problem.

Super-charm-tau factory, BINP, 2018

Increase of the PD dark current due to neutron background. By the end of the Belle experiments the PD dark current increased up to 200 nA for the most loaded area.

HUWEVEL, a		ing io in	e sinus	uon
		12th Campaign	11th Campaign	Tolerance
Crystal Radiation Dose	Forward	3.0	3.0	
(Gy/yr)	Barrel	0.8	0.5	10

4.5

23

5

14

0.4

0.8

23

5

15

4.3

3.1

8.2

3.44

< 0.2

3.1

24

4

12.5

<0.2

0.64

12.5

3.8

5.4

2.57

2

24

4

0.7

1000

70

100

0.8 for Belle

6 for Belle

Backward

Backward

Backward

Backward

Backward

Forward

Barrel

Forward

Barrel

Forward

Barrel

Forward

Barrel

Crystal Neutron Flux

Diode Radiation Dose

Diode Neutron Flux

 $(x10^9 yr^{-1} cm^{-2})$

Pileup Noise (MeV)

Reconstructed Cluster

 $(x10^9 vr^{-1} cm^{-2})$

(Gy/yr)

H	owever,	accord	ling to	the	simul	stion
---	---------	--------	---------	-----	-------	-------

The dark current induced by the expected neutron flux will be still below 1 µA and corresponding noise contribution should be below 1 MeV, still not the most annoying problem.

> Super-charm-tau factory, **BINP, 2018**

Fake clusters

Pile-up noise

Estimated Pile up Noise vs 8,

(E>20 MeV) 6 fake clusters, 3 in barrel 3 in endcaps background

Super-charm-tau factory, BINP, 2018

In spite of the upgraded electronics performance of the end caps is still questionable

Properties of pure CsI and CsI(Tl) scintillation crystals

	ρ, g/cm ³	X ₀ , cm	λ _{em,} nm	N(λ _{em,} nm)	N _{ph} /MeV	T, ns	dL/dT, %/° @20°C
Pure Csl	4.51	1.85	305	2	2000- 5000	20/1000	- 1.3
CsI(TI)	4.51	1.85	550	1.8	52000	1000	0.4

Expected improvement with pCsI

Time information allows to suppress the fake clusters for endcaps by a factor of 7x30=200 by rejecting wrong time clusters due to shorter decay time of the pure CsI

27.05.2018

Pure CsI for Mu2e Experiment

27.05.2018

Calorimeter for the BINP C-Tau Factory detector

Baseline is pure CsI calorimeter.

An option – pure CsI is in the end caps and CsI(Tl) – in the barrel. Background simulation is highly needed!

Will be discussed in the D.Epifanov talk

0 1020304050

Super-charm-tau factory, BINP, 2018

Other scintillators

http://scintillator.lbl.gov/

Contains 564 entries

	ρ, g/cm ³	X ₀ , cm	λ _{em,} nm	n(λ _{em,})	N _{ph} /MeV	τ, ns
CsI(TI)	4.51	1.85	550	1.8	52000	1000
Pure Csl	4.51	1.85	305	2	2000-5000	20/1000
BGO (Bi ₄ Ge ₃ O ₁₂)	7.13	1.12	480	2.1	9000	300
LaBr ₃ (Ce)	5.1	1.95	380	1.9	63000	30
LSO (Lu2SiO5:Ce)	7.41	1.14	420	1.8	27000	40
LYSO ((Lu,Y)2SiO5:Ce)	7.1	1.20	400	1.8	33000	30
LuAP LuAIO ₃ (Ce)	8.34	1.08	365	1.9	20500	20
GSO (Gd2SiO5:Ce)	6.71	1.37	440		8000	40
GAGG (Gd3Al2Ga3O12(Ce))	6.63	1.59	520		46000	90

COMET electron calorimeter

About 2000 LYSO crystals (~500 ECAL modules) are needed to cover the detector region of 50cm radius.

> Schematic layout of the electron calorimeter system; (right top) single LYSO crystal module structure + 1 APD on PCB, (right bottom) ECAL module structure with 2×2 LYSO crystals.

module holder

Combined calorimeter element?

5cm LSO suppress the background rate by factor about 15 The light readout from LSO crystals can be made by two 1×1 cm² APDs or(and) SiPM. The option is needed to study.

Conclusion

There are nine and sixty ways of constructing tribal lays, And every single one of them is right. *Rudyard Kipling. "In the Neolithic Age"*

However, we have to find an optimal material and design of the calorimeter to build it in a reasonable time for a reasonable cost and still with proper quality.

To do that we need new ideas and a joint active R&D work of many interested physicists