COMPUTING CHALLENGES OF SUPER C-TAU FACTORY

Ivan Logashenko

BINP/NSU

Super c-tau factory workshop, May 26-27, 2018

at Budker INP

Disclaimer

- Most of the numbers shown in the talk were estimated several years ago
- We estimate the numbers are realistic within factor 2
- Obviously, they have to be updated and refined. To do that, we have to refine detector and electronics design.

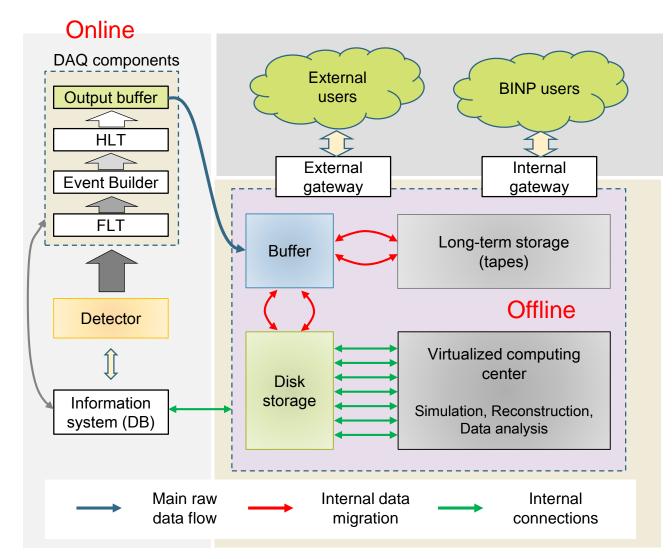
Expected data rate and volume

- Maximum trigger rate
 300 kHz
- Raw event size
 30-50 kB
- Total number of raw events
 recorded

 2×10^{12}

 Total volume of raw data 60-100 PBytes

Hadronic decays							
	J/ψ Ψ(2S)		Ψ(3770)				
Е, МэВ	3097 3686 377		3770				
σ, нб	1400 370 ≈€		≈6				
f, кГц	110 34		0.6				
Background processes							
Cosmics, kHz	≈2						
Hadrons, kHz	19 17		16				
Bhabha, kHz	90 80		80				


Expected trigger rates at full luminosity

Comparison with existing experiments

We can compare Super $c - \tau$ factory with other e^+e^- facilities: experiments at B-factories (BABAR, BELLE, BELLE-2) and at $c - \tau$ factory (BES-III)

	SCTF	BABAR	BELLE	BELLE-2	BES-III
Luminosity integral, 1/ab	10	0.5	1	50	~0.02
Number of events, 10^{10}	200	1			1
Event size, кБ	30-50	30	38	300	12
Raw data volume, PBytes	60-100	0.7	1	200	
Reconstructed data volume, PBytes	10	1	0.2	80	

General overview of IT infrastructure

Main parameters (requiremets)

Maximum input data rate: 10 GB/s

Total storage system capacitance 240 Pbytes (→300?)

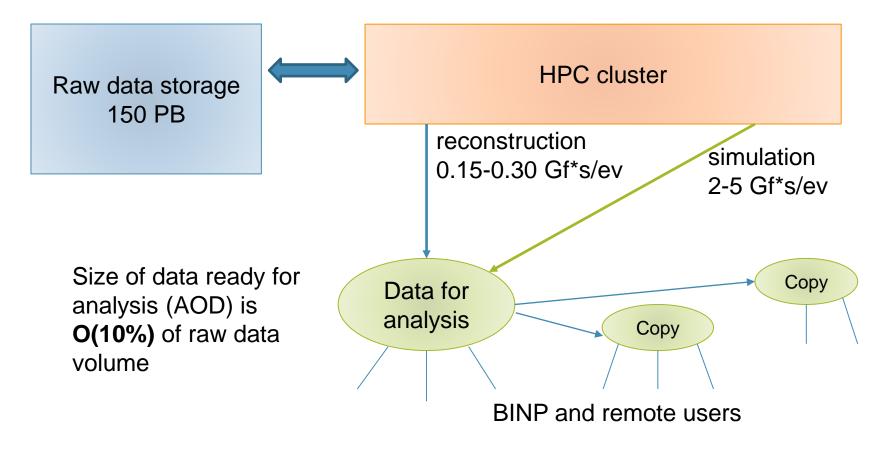
Computing power 0.6 Pflops $(\rightarrow 1?)$ (1 MW) $(\rightarrow 0.5$ MW)

Can be realized with commercial solutions

Major components of the local IT infrastructure

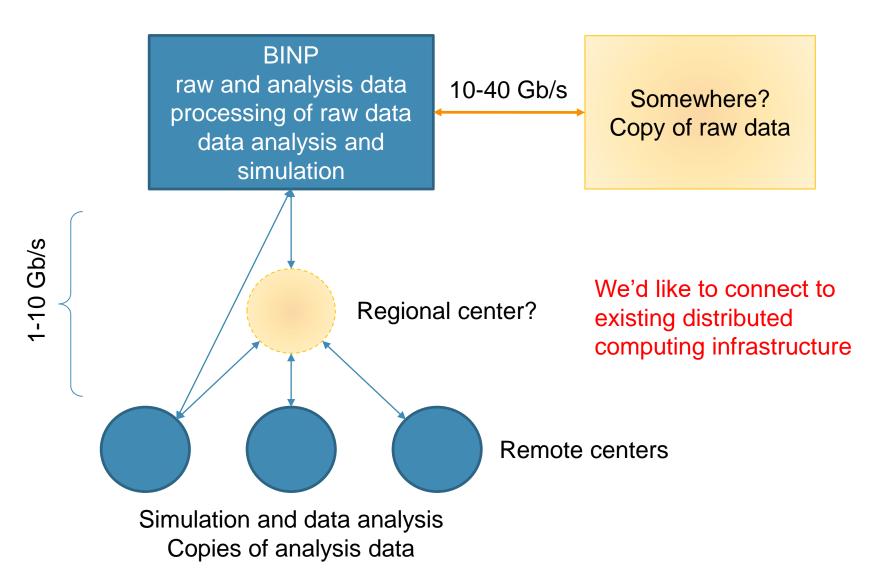
- Online computing farm
 High level trigger
 Connectivity to offline: 100-1000 Gb/s
 Architecture to be determined (GP/GPU/FPGA/?)
- Offline computing farm
 - General purpose architecture Virtualization Computing power of ~0.6 Pflops (or higher)
 - Integrated with data storage system
- Data storage system
 Has disk-based and tape-based sybsystems
 Total capacity of 240 Pbytes (or larger)

. . .


7

Program infrastructure

Experiments at Super $c - \tau$ factory will adopt typical solutions (de facto standards), used in other high energy physics experiments:


- LINUX operation system
- Virtualized infrastructure
- Tools for collaborative software development (version control, continuous integration,...)
- Modular software framework (GAUDI, ART,...)
- Simulation is GEANT4-based
- Data analysis using ROOT and popular non-HEP tools (R, TensorFlow,...)
- Middleware for distributed data analysis (DDM, PANDA, AGIS,...)

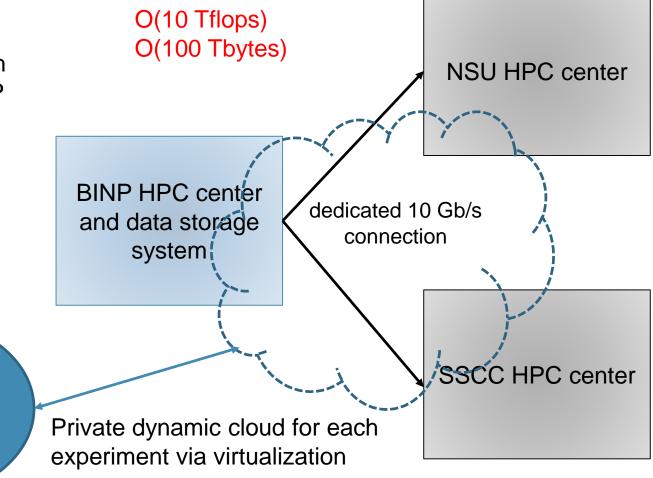
Typical scenario

- Raw data volume is much larger than analysis data volume
- Computing power is mostly used for simulation

Distributed computing model

Existing computing infrastructure

There is local distributed HCP infrastructure in/around BINP, which is being used for HEP data analysis and simulation


Can be used as testbed for SCTF computing development

BINP

experiments

(KEDR, CMD-

3, SND,...)

Tier 0

- There are government plans to invest to Akademgorodok infrastructure
- There are proposals to establish national data analysis and storage center in Akademgorodok with capacity few times of SCTF requirements
- If these proposals will go forward, Tier 0 of SCTF can be organized as a part of such center
- Otherwise we'll have to establish dedicated SCTF center

There are no technical challenges to build data analysis and storage center of required capacity

Very preliminary implementation plan

- Now our focus is the development of the software infrastructure
 - ROOT, Geant4, Gaudi framework, DD4HEP for detector description, HepMC3 for event generation, PODIO for data model, git, cmake,...
 - Goal is to have full scale software environment for detailed detector simulation and data reconstruction
- Next step will be development of the distributed computing infrastructure for simulation and reconstruction
 - Build on existing resources (including remote) with scalability in mind
- As the financial resources become available, build a data center for SCTF in few steps

Conclusion

- For experiments at Super $c \tau$ factory a local computing infrastructure is required with the following tentative requirements: 600-1000 Tflops, 200-300 Pbytes.
 - There are centers like that in the world, and even in Russia
 - Right now we have O(1%) of computing power and O(0.1%) of storage capacity
- The simulation and data analysis can be effectively done at remote centers – possibility for collaboration
- The focus now is the development of simulation/reconstruction software and middleware for distributed computing