ЭКСПЕРИМЕНТЫ С ДЕТЕКТОРОМ КМД-3 НА КОЛЛАЙДЕРЕ ВЭПП-2000

Иван Логашенко (ИЯФ СО РАН)

Научная сессия Объединенного ученого совета по физическим наукам СО РАН

27.11.2024

Физическая программа ВЭПП-2000

1. Прецизионное измерение R(s) $R(s) = \sigma(e^+e^- \rightarrow \text{hadrons}) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$

<1% для основных каналов

- 2. Изучение адронных каналов: e+e⁻ → 2h, 3h, 4h ..., h= π ,K,η
- 3. Изучение возбуждений векторных мезонов: ρ', ρ'', ω', φ',..
- Изучение парного рождения нуклонантинуклона – электромагнитные формфакторы нуклона, ...
- 5. Двухфотонная физика

Тесная связь с задачей измерения вклада сильных взаимодействий в аномальный магнитный момент мюона

Изучение рождения адронов в аннигиляции *e*⁺*e*⁻:

- Что рождается?
- Сколько рождается?
- Как рождается?

Рождение пар *pp̄,nī* Поведение адронных сечений на пороге

> Отдельные задачи: $e^+e^- \rightarrow \eta, \eta', f_1$ $e^+e^- \rightarrow \pi^0 e^+ e^$ $e^+e^- \rightarrow D^{0*}$

Коллайдер ВЭПП-2000

Электрон-позитронный коллайдер Энергия в системе центра масс от 0.36 до 2.0 ГэВ Два детектора – КМД-3 и СНД

Design parameters @ 1 GeV	
Circumference	24.388 m
Beam energy	150 ÷ 1000 MeV
N of bunches	1×1
N of particles	1×10 ¹¹
Betatron tunes	4.14 / 2.14
Beta*	8.5 cm
BB parameter	0.1
Luminosity	1×10 ³² cm ⁻² s ⁻¹

КМД-3

Непрерывный мониторинг энергии пучков с помощью комптоновского рассеяния ($\sigma_{\sqrt{s}} \approx 0.1~{\rm MeV}$)

Светимость ВЭПП-2000

Уникальная оптика ВЭПП-2000 – «круглые пучки» - разработка ИЯФ

Позволяет преодолеть ограничения по эффектам встречи

Мировой рекорд по светимости в однобанчевом режиме!

Набранная статистика

Превысили 1 фб-1!

Детектор КМД-3

Детектор СНД

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counters, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

Наблюдаемые каналы $e^+e^- \to$ адроны

Каналы, анализ которых ведется на КМД-3

Signature	Final states (preliminary, published)
2 charged	$\pi^+\pi^-, K^+K^-, K_SK_L, p\overline{p}$
2 charged + γ 's	$\pi^{+}\pi^{-}\gamma, \pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\eta, K^{+}K^{-}\pi^{0}, K^{+}K^{-}\eta, K_{S}K_{L}\pi^{0}, K^{+}K^{-}\eta, K_{S}K_{L}\pi^{0}, K^{+}K^{-}\eta, $
	$K_{S}K_{L}\eta,\pi^{+}\pi^{-}\pi^{-}\eta,\pi^{+}\pi^{-}2\pi^{\circ},\pi^{+}\pi^{-}3\pi^{\circ},\pi^{+}\pi^{-}4\pi^{\circ}$
4 charged	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{+}\pi^{-}$, $K_{S}K^{\pm}\pi^{\mp}$
4 charged + γ 's	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\eta, \pi^{+}\pi^{-}\omega, \pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0},$
	κ κ η, κ κ ω
6 charged	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$, $K_{S}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$, $K_{S}K_{S}\pi^{+}\pi^{-}$
6 charged + γ 's	$3(\pi^+\pi^-)\pi^0$
Neutral	$\pi^0\gamma$, $\eta\gamma$, $\pi^0\pi^0\gamma$, $\pi^0\eta\gamma$, $\pi^0\pi^0\pi^0\gamma$, $\pi^0\pi^0\eta\gamma$
Other	$n\overline{n},\pi^0 e^+ e^-,\eta e^+ e^-$
Rare decays	η' , $D^*(2007)^0$

Опубликованные результаты

$$e^+e^- \rightarrow \pi^+\pi^-$$

• Наибольшая статистика в мире

- 34 000 000 $e^+e^- \to \pi^+\pi^-$
- 3700 000 $e^+e^- \to \mu^+\mu^-$
- 44 000 000 $e^+e^- \to e^+e^-$
- Глубокий анализ данных со встроенными перекрестными проверками
 - 3 метода идентификации частиц
 - 2 метода измерения углов вылета
 - Измерение $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$
 - Измерение зарядовой асимметрии
- Подробный анализ возможных источников систематических ошибок
- Систематическая точность 0.7-0.8%

Статистическая точность разных измерений $\sigma(e^+e^- \to \pi^+\pi^-)$

$$e^+e^- \rightarrow \pi^+\pi^-$$

Предварительный результат измерения в области энергий выше 1 ГэВ

«Побочный» результат измерения $e^+e^- \to \pi^+\pi^-$ Основан на измерении числа фоновых событий $e^+e^- \to \pi^+\pi^-\pi^0$ Систематическая точность 3.3%

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

$K_S K_L$ и $K^+ K^-$ @ $\varphi(1020)$

- *K_SK_L*, систематическая точность 1.8%
- *К*⁺*К*⁻, систематическая точность 2.0% (2.8%)

K^+K^- : comparison with other measurements

 $K_S K_L$ согласуется в разных экспериментах, а в канале $K^+ K^-$ наблюдаются отличия

Измерение *К*⁺*К*⁻ с детектором КМД-3 согласуется с изоспиновой симметрией

$$R = \frac{g_{\varphi K^+ K^-}}{g_{\varphi K_S K_L} \sqrt{Z(m_\varphi)}} = 0.990 \pm 0.017$$

- $R_{SND} = 0.92 \pm 0.03(2.6\sigma)$
- $R_{CMD-2} = 0.943 \pm 0.013(4.4\sigma)$
- $R_{BaBar} = 0.972 \pm 0.017(1.5\sigma)$

Идентификация частиц в LXe (КМД-3)

LXe калориметр измеряет профиль энерговыделения, который можно использовать для идентификации частиц.

Классификаторы, построенные с помощью методов машинного обучения

 $e^+e^- \rightarrow K^+K^-$ @SND and @CMD-3

Предварительные результаты измерения в диапазоне энергий выше 1 ГэВ

21

cross-section 4pi,nb $e^+e^- \rightarrow 4\pi$ $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^$ ниже 1 ГэВ 10^{-1} CMD-3 omega18 this work CMD-3 omegaphi13 this work(only 4tr) CMD-3 omegaphi11 this work(only 4tr) CMD-3 omegaphi17 this work(only 4tr) CMD-3 omegaphi12 this work(only 4tr) 10^{-2} CMD-3 rho13 this work(only 4tr CMD-2 Babar CMD-3 2016 4pi at phi SND 2001 600 700 900 800 1000 1100 Energy c.m.,MeV a1π $\sigma(e+e- -> 2\pi^0 \pi^+ \pi^-)$ p f2 30 preliminary $\rho^+ \rho$ • $\rho[1^{--}]f_0/\sigma[0^{++}]$ 25 h1 π • $\rho f_2(1270)[2^{++}]$

Изучение динамики $e^+e^-
ightarrow \pi^+\pi^-\pi^0\pi^0$ И $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

• $a_2(1320)[2^{++}]\pi$

• $h_1(1170)[1^{+-}]\pi^0$

• $\pi'(1300)(0^{-+})\pi$

• $\rho^+ \rho^-$

PLB 756 (2016) 153

Впервые измерено полное сечение $e^+e^- \to 3(\pi^+\pi^-)\pi^0$

Показано, что доминируют каналы

 $e^+e^- \rightarrow p\bar{p}$

PLB 759 (2016) 634 Данные 2011-2012

Адронные сечения на пороге $N\bar{N}$

Уникальные возможности по сканированию порогов $par{p}$ и $nar{n}$

- наблюдаются резкие структуры $e^+e^- \to p\bar{p}$, $3(\pi^+\pi^-), K^+K^-\pi^+\pi^-$
- ширина ~1МэВ согласуется с разрешением по энергии
- загадка не видна структура в $e^+e^- \rightarrow 2(\pi^+\pi^-)$ Ведется широкая программа изучения динамики на пороге $N\overline{N}$

Поиск редкого распада: $e^+e^- \rightarrow D^{*0}$

КМД-3 набрал 25 пб⁻¹ при энергии 2007 МэВ

Чувствительность:

$$B_{D^* \to e^+ e^-} \ge \frac{4 \times 10^{-10}}{\varepsilon \int L dt \ [pb^{-1}]} \times \frac{\sigma_{2E}}{\Gamma_{D^*} \ [60 \ keV]}$$

26

Предсказание СМ: $B_{D^* \to e^+ e^-} \approx (0.1 \div 7) \times 10^{-19}$

 $B(D^{0*} \to e^+e^-) < 3.7 \cdot 10^{-7}$

Возможные бранчинги в Новой физике:

Заключение

- ВЭПП-2000 и детекторы КМД-3 и СНД продолжают набор статистики в области энергий 0.32 ≤ √s ≤ 2.0 ГэВ. Набрано более 1 фб⁻¹ на детектор – самый большой объем статистики в мире в этой области энергий.
- Опубликован ряд результатов по измерению адронных сечений с наилучшей в мире точностью. Продолжается измерение эксклюзивных сечений и динамики рождения адронов.
- ВЭПП-2000 предоставляет уникальные возможности по измерению поведения адронных сечений на пороге рождения пары NN.
- Результат КМД-3 по измерению сечения e⁺e⁻ → π⁺π⁻ привел к пересмотру устоявшегося мнения о наличии противоречия между измеренной величиной аномального магнитного момента мюона и предсказанием Стандартной модели