

Working meeting

CW test facility at VEPP-4M

A. BogomyagkovE. LevichevS. Sinyatkin

26.02.2025

Initial conditions

- Complexity of Crab Waist (CW) Colliders
- Testing «key» ideas in a short time
- Risks of projects without preliminary testing on prototypes
- To test the "solutions" of CW colliders, small machines (or machines with minor modifications) are needed.

Questions and problems of CW colliders

- Beam-Beam Effects with a large Piwinsky angle and CW
- Dynamic aperture and Touschek lifetime limitation due to nonlinear dynamics and crab sextupoles
- Dependence between beam-beam parameter and beam energy
- Backgrounds in the detector area
- Design of Final Focus (FF) Quadrupole and Solenoids
- Design of a cryostat and cryosystem
- Design and cooling of the vacuum chamber at interaction point (IP)
- Vacuum chamber impedance in IP
- Estimation of the required tolerances of assembly and alignment of FF elements
- Detector field influence on the mechanical stability of the FF system and beam dynamics

VEPP-4CW. Partial Crab-Waist.

The experimental section is modified for partial CW.

Testing :

- Final focus (design, assembly, mechanical stability).
- Cryogenic system.
- Beam-Beam effects, limitation of ξ .
- Parameters study at energy change.
- Detector field influence on FF fields.
- Influence and optimization of "crab" sextupoles.
- Vacuum chamber and impedances at IP.
- Nonlinear dynamics.
- Particle losses and superconductivity.
- Detector backgrounds.
- Luminosity measurement.
- Etc.

VEPP-4CW. Partial Crab-Waist.

Modifications:

- New experimental section with partial CW.
- Electrostatic separation sections are inserted (BM3).
 - New elements:
 - 8 dipoles
 - 38 quadrupoles
 - 14 (6) sextupoles at experimental section.

VEPP-4CW. Interaction region.

B(m) B(m)

VEPP-4CW. Parameters.

1 x 1 bunch

	VEPP -4M	VEPP -4 CW	VEPP -4 CW
E, GeV			
C, m	366.09	366.21	366.21
θ, mrad	0	±30	±30
I, мА	3.3	15.7	15.7
N _e ×10 ⁻¹⁰	2.5	12	12
Nb	1	1	1
Q _x /Q _y	8.54/7.58	11.54/7.58	11.54/7.58
C _x /C _y	-14/-20	-27/-43	-27/-43
α×10 ²	1.7	1.6	1.6
ɛ _x , nm*rad	25.8	23.8	25.6
κ	0.1	0.05	0.025
$\sigma_e \times 10^4$	3.2	4.4	4.6
σ _s , M ^{**}	27.8	26.8	26.3
$\beta_x^*/\beta_y/D$, cm	75/7/83	15/1/0	15/1/0
ξx/ξy	0.026/0.051	0.002/0.038	0.003/0.072
$\tau_x/\tau_y/\tau_e$, sec	0.12/0.13/0.07	0.09/0.11/0.06	0.11/0.11/0.06
L, cm ⁻² c ⁻¹ ×10 ⁻³⁰	1	24	46

IBS blow up: VEPP-4M $d\epsilon/\epsilon = 1.4$ %, $\sigma E/E = 0.8$ % VEPP-4CW $d\epsilon/\epsilon = 5.3$ %, $\sigma E/E = 3.7$ %

50.

s (m)

100.

150.

200.

350

Dynamic aperture

VEPP-4M

VEPP-4CW

- Double aperture CCT lenses. ΔXmin = 54 mm (QD0).
- Ordinary elements. ΔWmax = 280 mm. R= 20 mm.
- Single aperture elements for e- and e+. R>20 mm.

VEPP-4CW. Magnet elements of experimental section.

Имя	Тип	Ν	L, m	G <i>,</i> T/m	R, mm	W, mm
Q0	ССТ	2	0.35	39	19	51
Q1	ССТ	2	0.35	28	30	74
Q2-8	Ord.	28	0.3	8 - 29	20	~270
Q9-10	ССТ	4	0.3	10 - 19	20	50
Q11	Ord.	2	0.3	4	30	-

Имя	Ν	L, m	alf,mrad	B,T	Comment
					Electrostatic separation
BM3	2	4.5	3	-	U=24.7 kV, h =4 cm
BM2	2	1.0	62.5	0.386	
BM_DS	2	1.0	70	0.432	DC septum
L.BM1	1	1.0	68.5	0.423	
R.BM1	1	1.0	204.5	1.262	

Sextupoles

Имя	Ν	L, m	S, T/m^2
S1	2	0.2	8 – 87
S_CRAB	4	0.3	±1155.7

VEPP-4CW. Main magnet elements of arcs.

			VEPP-4M	VEPP-4CW
Name	L, m		S, T/m^2	S, T/m^2
D7		1.11387	-1.415	-1.678
F7		1.11309	0.893	1.114
FS		0.342	7.175	5 17.415
DS		0.342	-11.76	-33.821

There are no changes in the strengths of the quadrupole lenses outside the experimental section.

VEPP-4CW. Magnet elements of insertion sections.

VEPP-4CW. Interaction region (IR).

- The field of the main solenoid is 1.5 T in the region of \pm 0.4 m main devices (elements) free.
- Opening detector cone angle $\phi \le 10^{\circ}$.
- L* = 0.9 m is the distance between IP and QD0s.
- Total crossing angle is 60 mrad "Crab-Waiste" scheme. Horizontal field is produced.
- Blow up of vertical emittance in the final focus region is produced by radial fields and skew gradient of compensating and main solenoids.
- Solenoid fields in the region of FF lenses should be suppressed by a screening solenoid.

VEPP-4CW. Solenoid field compensating.

VEPP-4CW. Horizontal cross section of Interaction Region.

VEPP-4CW. Magnetic field simulation.

 $R_{harmonic} = 7 \text{ mm}$ An << 10⁻⁴ T, n≠1 Bn << 10⁻⁴ T

VEPP-4CW. Interaction region. Magnetic field distribution along beam trajectory.

Magnetic field (Q0, at 0.9 m): Bx < 8 Gs Bs < 110 Gs G_skew< 0.23 Gs/cm

 $R_{harmonic} = 10 \text{ mm}$ An < 10⁻⁴ , n≠1 Bn < 10⁻⁴

Compensating solenoid

Screening solenoid

Final focus lenses (FF)

VEPP-4CW. Interaction region. Magnetic field distribution along beam trajectory.

19

VEPP-4CW. Interaction region. Vertical emittance blow up.

 Variation of main solenoid field area (L_{main}) & compensating solenoid area (L_{comp})

For:

Lmain_new = 1.2 m, Lmain = 0.8 m Lcomp_new =0.2 m, Lcomp = 0.3 m

• Beta functions variation ($\beta_{v | IP}$) at IP:

• Variation of main solenoid magnetic field:

$$\varepsilon_{y} \sim I_{5,y} \sim B_{x}^{5} \sim B_{s}^{5}$$

VEPP-4CW. Interaction region. MAD-X calculation based on magnetic field.

VEPP-4CW. Interaction region. MAD-X calculation based on magnetic field.

Energy, GeV	1
Qx	11.54
Qy	7.57
εx, nm*rad	21
εy, pm*rad	0.45
εγ / εχ	2e-5
βx_IP, m	0.150
alfx_IP	-0.00
βy_IP, mm	10
alfy_IP	0.00
ηx_IP, m	0.00
ηy_IP, m	0.00

MAD-X (Skew component - off) εy = 0.039 pm*rad

Estimation: εy = 0.058 pm*rad

Conclusion

- Upgrade is possible. VEPP-4M -> VEPP-4CW-> VEPP-6.
- Many effects associated with the Crab Waist can be estimated at this stand.
- For VEPP-4CW the influence of the detector solenoids is small.
- For C-Tau, VEPP-6 the optimization of the solenoids edge fields will be required.
- The chosen arrangement of the solenoids provides small fields in the area of the FF lenses.