Developments on the SCTF drift chamber simulation Vyachesav Ivanov Higher School of Economics, Moscow, 28.02.2

Plan

- I will briefly talk about those aspects of DC simulation that may be interesting for the joint work with Chinese colleagues:
- 1. Specific wires layout in the BINP SCTF DC project
- 2. Peak finding and Cluster Counting issues

Part 1: DC wires geometry

• Our DC wires geometry design was initially inspired by the proposal by Franco Grancagnolo (TrapID project):

https://indico.ijclab.in2p3.fr/event/4902/contributions/17030/attachments/13603/16389/SCTFDrift_Chamber.pdf

- TrapID:
- 1. Full stereo geometry (no axial layers) ensures uniform response and optimal filling of the DC volume
- 2. Square cells + set of superlayers
- 3. "Zipping layers"
- "Zipping layers" allow to maintain the square cell shape along the entire wire length
- Our design:
- 1. Full stereo geometry
- 2. Square cells of **constant** size (like in KLOE) and, consequently, **no** superlayers
- **3.** No "zipping layers" instead, we double the number of field wires in the field layer. This allows to reduce maximum distortion of cell square shape

DC wires geometry: our design

- *h* radial cell height, constant for all layers
- $w = \frac{\pi}{3}h$ median cell width (arc length)
- The increment ΔN in the number of wires from layer to layer is constant and equals **6**

Parameter	Value
Inner radius R _{in}	200 mm
Outer radius Rout	800 mm
Length L	1800 mm
Cell shape	Square
Cell height h	5, 6, 7, 8, 9 or 10 mm
Number of layers	116, 97, 83, 71, 63, 58
Stereoangle xy proj. α	$\pi/8$, rad
Stereoangle ε	~50 – 150 mrad
Gas mixture	90% He – 10% iC ₄ H ₁₀
Magnetic field B	1.5 TI
Signal wire diameter	20 <i>µ</i> m, W
Field wire diameter	40 µm, Al
High voltage	from 1420 to 1600 V
Gain	$\sim 3 \times 10^5$

DC wires geometry: our design

Cell shape dependence on z

Example of $\beta_{up}(z)$

• Quasi-periodic dependence of $tan(\beta_{up})$ on z:

Example of $\beta_{up}(z)$

• The dependence is piecewise linear with very good accuracy:

Cell shape dependence on z: step 1/50

Cell shape dependence on z: step 2/50

Cell shape dependence on z: step 3/50

Cell shape dependence on z: step 4/50

Cell shape dependence on z: step 5/50

Cell shape dependence on z: step 6/50

Cell shape dependence on z: step 7/50

Cell shape dependence on z: step 8/50

Cell shape dependence on z: step 9/50

Cell shape dependence on z: step 10/50

Cell shape dependence on z: step 11/50

Cell shape dependence on z: step 12/50

Cell shape dependence on z: step 13/50

Cell shape dependence on z: step 14/50

Cell shape dependence on z: step 15/50

Cell shape dependence on z: step 16/50

Cell shape dependence on z: step 17/50

Cell shape dependence on z: step 18/50

Cell shape dependence on z: step 19/50

Cell shape dependence on z: step 20/50

Cell shape dependence on z: step 21/50

Cell shape dependence on z: step 22/50

Cell shape dependence on z: step 23/50

Cell shape dependence on z: step 24/50

Cell shape dependence on z: step 25/50

Cell shape dependence on z: step 26/50

Cell shape dependence on z: step 27/50

Cell shape dependence on z: step 28/50

Cell shape dependence on z: step 29/50

Cell shape dependence on z: step 30/50

Cell shape dependence on z: step 31/50

Cell shape dependence on z: step 32/50

Cell shape dependence on z: step 33/50

Cell shape dependence on z: step 34/50

Cell shape dependence on z: step 35/50

Cell shape dependence on z: step 36/50

Cell shape dependence on z: step 37/50

Cell shape dependence on z: step 38/50

Cell shape dependence on z: step 39/50

Cell shape dependence on z: step 40/50

Cell shape dependence on z: step 41/50

Cell shape dependence on z: step 42/50

Cell shape dependence on z: step 43/50

Cell shape dependence on z: step 44/50

Cell shape dependence on z: step 45/50

Cell shape dependence on z: step 46/50

Cell shape dependence on z: step 47/50

Cell shape dependence on z: step 48/50

Cell shape dependence on z: step 49/50

Cell shape dependence on z: step 50/50

Isochrones map.dependence on z: step 1/50

 $^{\circ}$

0 0

Ο

Isochrones map.dependence on z: step 2/50

Ο

0

Ο

Isochrones map dependence on z: step 3/50

Isochrones map_odependence on z: step 4/50

Isochrones map_odependence on z: step 5/50

Isochrones map_odependence on z: step 6/50

Ο

Isochrones map_odependence on z: step 7/50

Ο

Isochrones map_odependence on z: step 8/50

Isochrones map_odependence on z: step 9/50

Ο

Ο

Isochrones map dependence on z: step 10/50

Isochrones map dependence on z: step 11/50

Isochrones map dependence on z: step 12/50

Isochrones map dependence on z: step 13/50

Isochrones map dependence on z: step 14/50

Isochrones map dependence on z: step 15/50

Isochrones map dependence on z: step 16/50

Isochrones map dependence on z: step 17/50

Isochrones map dependence on z: step 18/50

Isochrones map dependence on z: step 19/50

Isochrones map dependence on z: step 20/50

Isochrones map dependence on z: step 21/50

Isochrones map dependence on z: step_22/50

Isochrones map dependence on z: step.23/50

Isochrones map dependence on z: step-24/50

Isochrones map dependence on z: step 25/50

Isochrones map dependence on z: step 26/50

Isochrones map dependence on z: step 27/50

Isochrones map dependence on z: step 28/50

Isochrones map dependence on z: step 29/50

Isochrones map dependence on z: step 30/50

Isochrones map dependence on z: step 31/50

Isochrones map dependence on z: step 32/50

Isochrones map dependence on z: step 33/50

Isochrones map dependence on z: step 34/50

Isochrones map dependence on z: step 35/50

Isochrones map dependence on z: step 36/50

Isochrones map dependence on z: step 37/50

Isochrones map dependence on z: step 38/50

Isochrones map dependence on z: step 39/50

Isochrones map dependence on z: step 40/50

Isochrones map dependence on z: step 41/50

Isochrones map dependence on z: step 42/50

Isochrones map dependence on z: step 43/50

Isochrones map dependence on z: step 44/50

Isochrones map dependence on z: step 45/50

Ο

Isochrones map dependence on z: step 46/50

0

Ο

 $^{\circ}$

0

Isochrones map dependence on z: step 47/50

Ο

0

0

0

Isochrones map dependence on z: step. 48/50

Ο

0

0

0

Isochrones map dependence on z: step.49/50

Ο

0

Ο

Isochrones map dependence on z: step 50/50

0

 $^{\circ}$

0

Ο
Drift time maps

- We simulated drift time and diffusion maps for h = 5,6,7,8,9 and 10 mm with the scan over the β_{up} period
- To compress the data, we fit this maps at fixed φ_{trk} using so-called Faber-Shauder basis

Drift time maps Faber-Shauder fit

time-2- ρ relations

• For h = 5,6,7,8,9 and 10 mm with the scan over β_{up} period we got the time-2- ρ relations, used in the hit reconstruction:

$\rho_{rec} vs. \rho_{trk}$

Example of the hit resolution and bias

• The obtained hit resolution $\sim 120 \ \mu m$ is typical for HeiC₄H₁₀ 90:10 mixture:

Further plans on this part of work

- Estimation of the resolutions on the track parameters for h = 5,6,7,8,9 and 10 mm (~ next 2 month)
- Estimation of the probability of **kinks** due to multiple scattering for h = 5,6,7,8,9 and 10 mm. This is important, since the proposed small cell size leads to an increase in the kinks probability and, therefore, worsens the track PID, reconstruction efficiency and resolutions
- Possible task for cooperation with Chinese colleagues: full stereo geometry disfavors the usage of global track finding algorithms (like Legendre/Hough transform). It is necessary to study whether it is possible to rely (in terms of performance and reconstruction efficiency in realistic background conditions) only on local track finding algorithms (like Combinatorial Kalman Filter) or on the Graph Neural Network

Part 2: Peak finding and Cluster counting

• Long time ago: we developed peak finding algorithm, based on dynamic **baseline estimation**. Peak is identified as the significant deviation from the current baseline estimate

Peak finding and Cluster Counting

Peak finding and z - coordinate measurement

• Charge division: $R_{in,amplifier} = 373 \Omega$, $\rho_{wire} = 0.112 \Omega/\text{mm}$

$$z = \left(\frac{l_{\text{wire}}}{2} + \frac{R_{in}}{\rho_{\text{wire}}}\right) \frac{A_{+} - A_{-}}{A_{+} + A_{-}} \qquad \sigma_{z} = 2\left(\frac{l_{\text{wire}}}{2} + \frac{R_{in}}{\rho_{\text{wire}}}\right) \frac{\sqrt{A_{+}^{2}\sigma_{A_{-}}^{2} + A_{-}^{2}\sigma_{A_{+}}^{2}}}{(A_{+} + A_{-})^{2}}$$

- As an amplitudes A_{\pm} one can use sum of peak amplitudes this results in a better resolution
- Another method determination of time shift between signals by maximization of their cross-correlation function. According to our simulation this gives a resolution $\sigma_z \sim 1.5$ cm
- **Possible task for collaboration:** determine using a prototype the **really** achievable resolution on *z* with the use of peak finding and their time correlations. Additional precise *z* measurement would be very helpful in the background suppression and track finding!

Peaks Clusterization (Cluster recognition)

- Large peak amplitudes fluctuations make this amplitudes essentially useless for the cluster counting thus we use only the sequence of peak times
- The peaks clusterization task is thus, essentially, the task of the choice of optimal (in some sense) clusterization time window Δt_{cl}. The latter should depend on:
- 1. Cluster density dN_{cl}/dx (can be estimated from dE/dx)
- 2. Track angle
- 3. Diffusion time (which itself depends on the drift time)
- 4. Signal peak width
- Since it is too hard to study all these dependencies in full simulation, I decided to simplify the task: I'm generating a set of $N_{layers} = 58$ waveforms, forming a pseudo-track with fixed known dN_{cl}/dx and fixed diffusion time
- The goal is to choose the optimal Δt_{cl} and to find, whether the clusterization really gives essential increase in the PID efficiency compared to the simple **peak counting** (dN_{peaks}/dx)
- I found, that event optimal clusterization (= that maximizes separation power) gives only ≤ 5% increase in the particle separation power
- The major reason for this is that not all (<80%, as a rule) of the simulated clusters are actually "recognizable", since:
- 1) some of them produce no peaks due to a small gain
- 2) some of them produce signals, overlapping with the peaks from another clusters

Separation power

Cluster Counting

- The results of our study of the effect of cluster counting on the PID and hit resolution are rather **disappointing**
- However, other colleagues may get more optimistic results by using another peak-finding and clustering algorithms, another signal shape and signal-to-noise ratio. In this case we want their results to be reproducible/verifiable
- Possible task for collaboration: develop a stand-alone cluster counting software with interface/implementation separation. It should allow the generation of pseudo-tracks, ionization clusters and digitized waveforms, and allow anyone to insert his own signal shape and peak finding and clusterization algorithms, and test their performance with various settings (dN_{cl}/dx) , sampling frequency, signal-to-noise ratio, etc.), as well as to verify the results, claimed by other colleagues

Once again: proposed software tasks for cooperation

- Full stereo geometry disfavors the usage of global track finding algorithms (like Legendre/Hough transform). It is
 necessary to study whether it is possible to rely (in terms of performance and reconstruction efficiency in realistic
 background conditions) only on local track finding algorithms (like Combinatorial Kalman Filter) or on the Graph
 Neural Network
- Determine using a prototype the really achievable resolution on z with the use of peak finding and their time correlations. Additional precise z measurement would be very helpful in the background suppression and track finding!
- Develop a stand-alone cluster counting software with interface/implementation separation. It should allow the generation of pseudo-tracks, ionization clusters and digitized waveforms, and allow anyone to insert his own signal shape and peak finding and clusterization algorithms, and test their performance with various settings (dN_{cl}/dx) , sampling frequency, signal-to-noise ratio, etc.), as well as to verify the results, claimed by other colleagues

Thank you for your attention!

Backup

Определение оптимального времени кластеризации

- Оптимальное время кластеризации можно определить через равенство $dN_{cl.reco}dx = r \times dN_{cl.MCTruth}dx$ (среднее реконструированное число кластеров равно среднему числу распознаваемых)
- Наконец, оптимальное время кластеризации можно и через максимум силы разделения для двух треков с близкими dN_{cl}/dx

Распознаваемость кластеров

The dependence of the average $dN_{...}/dx$ on Δt_{cl}

- The maximum separation power is achieved **not** for those Δt_{cl} , for which $dN_{cl.reco}/dx = dN_{cl.MCTruth}/dx$
- The reason for this is that not all the simulated clusters are actually "recognizable", since: some of them generate avalanches with too small gain (no peak reconstructed); some of them produce peaks, overlapping with peaks from other clusters

Faber-Shauder basis

Алгоритм поиска пиков в вэйвформе

- Для реконструкции кластеров необходимо сначала реконструировать пики, порожденные отдельными лавинами
- Вэйформа содержит чередующиеся локальные минимумы и локальные максимумы. Каждый локальный максимум рассматривается как пик-кандидат
- Для отбора действительных пиков среди всех пик-кандидатов необходимо сопоставить каждому из них некий количественный параметр критерий качества *q*
- Для вычисления *q* необходимо оценить подложку (baseline) под пиком, обусловленную предшествующими пиккандидатами

Коэффициенты затухания сигнала

- Для оценки подложки мы пользуемся тем, что нам известна форма сигнала от одной лавины
- Запоминаются коэффициенты затухания att[1...7] сигнала за 7 временных шагов начиная от максимума

Оценка подложки: мюоны

- Для оценки подложки под данным пик-кандидатом мы рассматриваем 3 предыдущих пик-кандидата как реальные пики и суммируем их вклады в подложку. Амплитуды этих пиков берутся с вычитанием подложки под ними
- Для контроля мы проверяем соответствие **оценки подложки** с **истинной подложкой**. В подавляющем большинстве случаев соответствие вполне удовлетворительное

Оценка подложки: протоны

Вычисление «качества» пик-кандидата

После вычитания подложки качество пика *q* вычисляется как минус логарифм функции правдоподобия для гипотезы, что отклонение точек сигнала (*a_i*, *i* = 1..*N*) от подложки (*b_i*) является выборкой из гауссового распределения:

$$q = \sum_{i=1}^{N} \frac{(a_i - b_i)^2}{\sigma_{noise}^2} + N \cdot \ln(2\pi\sigma_{noise}^2)$$

• Пик считается реальным, если *q*>3.0

Реконструкция прицельного параметра трека по первому кластеру

- Для реконструкции прицельного параметра трека по времени дрейфа первого электрона используются т.н. space-time (s t) соотношения
- Для получения s t соотношения при данном угле пролета трека и при данном z в Garfield++ разыгрывается 10⁴ треков и находится среднее время дрейфа первого электрона. Зависимость прицельного параметра от этого среднего времени и есть искомое s t соотношение
- Техническая трудность: эти зависимости нужно получить для всех азимутальных углов пролета трека, для всех слоев и всех *z*, а затем аппроксимировать параметризацией, допускающей калибровку в эксперименте!

Реконструкция прицельного параметра трека: MPS-алгоритм

 ρ_{true} , mm

- Для реконструкции прицельного параметра обычно используется время первого кластера (First Cluster). В силу дискретности ионизации это приводит к ှ систематическому завышению прицельного параметра
- кластеризацией пиков мы можем использовать времена всех кластеров для реконструкции прицельного параметра трека. Для этой цели был использован Maximum Product of Spacings (MPS) алгоритм: https://doi.org/10.1016/j.nima.2015.11.028
- Идея MPS-алгоритма состоит нахождении В прицельного параметра, при котором набор положений наиболее кластеров вдоль трека соответствует Это равномерному распределению. достигается максимизацией геометрического среднего нормированных расстояний (spacings) кластерами:

$$y_i = rac{\sqrt{
ho_i^2 - b^2}}{\sqrt{(d_{cell}/2)^2 - b^2}}$$
 Нормированные расстояния
(spacings) между кластерами:
 $D_i = y_i - y_{i-1}$
 $H(b) = rac{1}{N_{clusters} + 1} \sum_{i=1}^{N_{clusters}} \ln(D_i), \qquad
ho_{MPS} = rg \max H(b)$
В stand-alone-реализации MPS-алгоритма наблюдается

заметное уменьшение систематического смещения (bias) прицельного параметра при незначительному улучшении разрешения (resolution)

Этапы моделирования и реконструкции событий в ДК СЧТФ

Поиск треков

- Специфика геометрии ДК СЧТФ заключается в отсутствии аксиальных слоев и достаточно точного измерения z – координаты хита, откуда следует, что для хитов отсутствует единая плоскость, проекция на которую не искажала бы круговую форму траектории
- В силу этого для ДК СЧТФ мы разрабатываем локальный АПТ, а именно track following алгоритм

Идея track following алгоритма

- Алгоритм состоит из следующей последовательности действий:
- 1. Осуществляется реконструкция **дублетов хитов**, т.е. пар «пересекающихся» сработавших проволочек в соседних слоях
- 2. Осуществляется реконструкция цепей дублетов, служащих начальными сегментами треков, подлежащими дальнейшей экстраполяции
- 3. Производится экстраполяция сегмента трека до ближайшего хита, добавление этого хита к треку и его переаппроксимация (фильтром Калмана). Поскольку параметры трека известны с конечной точностью, могут возникать несовместимые варианты ассоциации хитов. В таком случае процесс экстраполяции ветвится и продолжается независимо для каждой ветви. В итоге получаем дерево сценариев экстраполяции
- 4. Когда для всех ветвей дерева возможности экстраполяции исчерпаны (трек выходит из объема ДК, либо ни один хит более не может быть присоединен к треку), в качестве окончательного трек-кандидата выбирается ветвь с наибольшим значением функции качества. Последняя должна вычисляться на основе информации о суммарном χ²/ndf ассоциированных хитов, количестве шагов экстраполяции и количестве не сработавших, но пересеченных ячеек (с учетом вероятности их срабатывания)

Реконструкция дублетов хитов

- Пара сработавших проволочек в соседних слоях объединяется в дублет, если *z* – координата середины их общего перпендикуляра *z*_{doublet,PCA} находится в пределах длины ДК
- При необходимости фильтрации случайных совпадений к этому условию добавляется требование на соответствие *z*_{doublet,PCA} *z* – координатам хитов, измеренным по методу деления заряда
- Величина z_{doublet,PCA} служит начальной оценкой z – координаты пролета частицы, вызвавшей одновременное срабатывание проволочек
- Неопределенность *z*_{doublet,PCA} может быть оценена по формуле

$$\sigma_{z_{\text{doublet,PCA}}} = \frac{d}{2\sqrt{6}sin\varepsilon}$$

Условное изображение пересекающихся дрейфовых ячеек шириной d и стереоуглами $\pm \epsilon$ в соседних слоях. Равномерно распределенные красные точки обозначают места пересечения летящими частицами границ обоих ячеек.

Разрешение ПО z_{-} координате пролета частицы, измеренной по месту сработавших пересечения проволочек в зависимости от номера слоя. Красные маркеры соответствуют точным значениям, полученным из моделирования, синие маркеры — оценке по формуле

Реконструкция дублетов хитов

 ρ_0

a_{n.xy}

 \mathbf{P}_{0}^{0}

аппроксимируем Μы образованные эллипсы, сечением дрейфовых цилиндров обоих проволочек ПЛОСКОСТЬЮ $z = z_{\text{doublet,PCA}}$ кругами равной площади

Пренебрегая поворотом частицы в магнитном поле на масштабе нескольких ШИРИН ячейки. ΜЫ можем реконструировать четыре касательных сегмента, отвечающих четырем возможным направлениям пролета частицы. Формулы для всех четырех направлений структурно одинаковы и отличаются лишь знаками s_{0.1.2} при некоторых величинах: $P_0^3 P^2$

 $\vec{s} = (1,1,1), (1,1,-1)$ – знаки для внешних касательных; $\vec{s} = (1, -1, 1), (-1, 1, 1)$ – знаки для внутренних касательных

 $(x_{0,1}, y_{0,1})$ – центры кружков, $\rho_{0,1}$ – их радиусы, $\vec{d}_{0.1}$ – направления проволочек в 3D

$$r_{0,1} \equiv s_{0,1}\rho_{0,1}, \quad \Delta r \equiv s_0\rho_0 - s_1\rho_1,$$

$$\Delta x \equiv x_0 - x_1, \quad \Delta y \equiv y_0 - y_1,$$

$$\Delta^2 \equiv \Delta x^2 + \Delta y^2, \quad \gamma \equiv s_2\sqrt{\Delta^2 - \Delta r^2}$$

Нормаль к касательному сегменту:

•

$$\vec{n} = (\Delta r \Delta x + \gamma \Delta y, \Delta r \Delta y - \gamma \Delta x) / \Delta^2$$

Начальная/конечная точки касательного сегмента

 $P_{0,1} = (x_{0,1}, y_{0,1}) - r_{0,1}\vec{n}.$

Ковариационная матрица координат точек касания

$$cov(P_{i,x}, P_{i,y}) = J \begin{bmatrix} \sigma_{\rho_0}^2 & 0 & 0 & 0 \\ 0 & \sigma_{\rho_1}^2 & 0 & 0 \\ 0 & 0 & \sigma_{z_0}^2 & 0 \\ 0 & 0 & 0 & \sigma_{z_1}^2 \end{bmatrix} J^T, i = 0, 1 \quad J = \frac{\partial(P_{i,x}, P_{i,y})}{\partial(\rho_0, \rho_1, z_0, z_1)} = \begin{bmatrix} \frac{\partial P_{i,x}}{\partial \rho_0} & \frac{\partial P_{i,x}}{\partial \rho_1} & \frac{\partial P_{i,x}}{\partial z_0} & \frac{\partial P_{i,x}}{\partial z_1} \\ \frac{\partial P_{i,y}}{\partial \rho_0} & \frac{\partial P_{i,y}}{\partial \rho_1} & \frac{\partial P_{i,y}}{\partial z_0} & \frac{\partial P_{i,y}}{\partial z_1} \end{bmatrix}, i = 0, 1$$

$$\begin{aligned} \Delta r &\equiv s_i \rho_i - s_{1-i} \rho_{1-i}, \\ \Delta x &\equiv x_i - x_{1-i}, \quad \Delta y \equiv y_i - y_{1-i}, \\ \gamma &\equiv (-1)^i s_2 \sqrt{\Delta^2 - \Delta r^2}, \quad i = 0, 1 \quad \frac{\partial P_{i,x}}{\partial \rho_i} = -\frac{s_i}{\Delta^2} (\Delta x \Delta r + \Delta y \gamma + r_i (\Delta x - \Delta y \Delta r/\gamma)) \\ \frac{\partial P_{i,x}}{\partial \rho_{1-i}} &= -\frac{r_i s_{1-i}}{\Delta^2} (\Delta x - \Delta y \Delta r/\gamma) \\ \frac{\partial P_{i,y}}{\partial \rho_i} &= -\frac{s_i}{\Delta^2} (\Delta y \Delta r - \Delta x \gamma + r_i (\Delta y + \Delta x \Delta r/\gamma)) \\ \frac{\partial P_{i,y}}{\partial \rho_{1-i}} &= -\frac{r_i s_{1-i}}{\Delta^2} (\Delta y + \Delta x \Delta r/\gamma) \end{aligned}$$

$$\frac{\partial P_{i,x}}{\partial z_0} = \frac{d_{0,x}}{d_{0,z}}(1-i) + (-1)^i \left(\frac{2r_i}{\Delta^4} \left(\Delta x \frac{d_{0,x}}{d_{0,z}} + \Delta y \frac{d_{0,y}}{d_{0,z}}\right) (\Delta x \Delta r + \Delta y \gamma) - \frac{r_i}{\Delta^2} (\Delta r \frac{d_{0,x}}{d_{0,z}} + \gamma \frac{d_{0,y}}{d_{0,z}} + \frac{\Delta y}{\gamma} (\Delta x \frac{d_{0,x}}{d_{0,z}} + \Delta y \frac{d_{0,y}}{d_{0,z}}))\right)$$

$$\frac{\partial P_{i,y}}{\partial z_0} = \frac{d_{0,y}}{d_{0,z}}(1-i) + (-1)^i \left(\frac{2r_i}{\Delta^4} \left(\Delta x \frac{d_{0,x}}{d_{0,z}} + \Delta y \frac{d_{0,y}}{d_{0,z}}\right)(\Delta y \Delta r - \Delta x \gamma) + \frac{r_i}{\Delta^2} \left(-\Delta r \frac{d_{0,y}}{d_{0,z}} + \gamma \frac{d_{0,x}}{d_{0,z}} + \frac{\Delta x}{\gamma} (\Delta x \frac{d_{0,x}}{d_{0,z}} + \Delta y \frac{d_{0,y}}{d_{0,z}}))\right)$$

$$\frac{\partial P_{i,x}}{\partial z_1} = \frac{d_{1,x}}{d_{1,z}}(1-i) + (-1)^i \left(-\frac{2r_i}{\Delta^4} \left(\Delta x \frac{d_{1,x}}{d_{1,z}} + \Delta y \frac{d_{1,y}}{d_{1,z}}\right) (\Delta x \Delta r + \Delta y \gamma) + \frac{r_i}{\Delta^2} (\Delta r \frac{d_{1,x}}{d_{1,z}} + \gamma \frac{d_{1,y}}{d_{1,z}} + \frac{\Delta y}{\gamma} (\Delta x \frac{d_{1,x}}{d_{1,z}} + \Delta y \frac{d_{1,y}}{d_{1,z}}))\right)$$

$$\frac{\partial P_{i,y}}{\partial z_1} = \frac{d_{1,y}}{d_{1,z}}(1-i) + (-1)^i \left(-\frac{2r_i}{\Delta^4} \left(\Delta x \frac{d_{1,x}}{d_{1,z}} + \Delta y \frac{d_{1,y}}{d_{1,z}} \right) (\Delta y \Delta r - \Delta x \gamma) - \frac{r_i}{\Delta^2} \left(-\Delta r \frac{d_{1,y}}{d_{1,z}} + \gamma \frac{d_{1,x}}{d_{1,z}} + \frac{\Delta x}{\gamma} (\Delta x \frac{d_{1,x}}{d_{1,z}} + \Delta y \frac{d_{1,y}}{d_{1,z}}) \right) \right)$$

Реконструкция цепей дублетов

- Для построения начального сегмента трека, подлежащего дальнейшей экстраполяции, дублеты объединяются в цепи. Длиной цепи дублетов называется количество дублетов (звеньев), из которых она составлена
- Два дублета объединяются в цепь, если:
- 1. Они имеют общую сработавшую проволочку и все их проволочки лежат в различных слоях ДК
- 2. z -координаты дублетов достаточно близки: $|z_{1, \text{doublet PCA}} z_{2, \text{doublet PCA}}| < k \sqrt{\sigma_{z, 1, \text{doublet PCA}}^2 + \sigma_{z, 2, \text{doublet PCA}}^2}, k = 5$
- Построение цепей идет от внешних слоев ДК к внутренним, так как плотность хитов на внешних слоях, как правило, минимальна
- Поскольку данный дублет в общем случае может быть соединен с несколькими дублетами в следующем слое, необходимо строить и анализируем все возможные цепи с началом в данном дублете

Реконструкция цепей дублетов

 Поскольку данный дублет в общем случае может быть соединен с несколькими дублетами в следующем слое, необходимо строить и анализируем все возможные цепи с началом в данном дублете

Иллюстрация к построению всех возможных цепей, построенных начиная с одного дублета на внешнем слое. Желтые клетки условно изображают дублеты. Возможность соединения дублетов в цепь определяется отношениями соседства layer₁ – layer₂ = 1 и $|\text{cell}_1 - \text{cell}_2| \leq 1$. Возможные цепи дублетов, показаные красными графами, строятся рекурсивным алгоритмом от внешних слоев к внутренним.

Реконструированная цепь дублетов

Экстраполяция треков (track following)

Экстраполяция треков (track following)

Экстраполяция треков (track following)

Экстраполяция треков (track following)

Этапы моделирования и реконструкции событий в ДК СЧТФ

Аппроксимация трека

- Мы фильтра Калмана, предоставляемый пакетом GenFit
- Фильтр Калмана представляет собой рекурсивный алгоритм, предназначенный для оценки **вектора состояния** динамической системы на основе **дискретизированного во времени** набора зашумленных измерений (Википедия)
- В случае ДК вектором состояния является **вектор из пяти параметров трека**, набором измерений реконструированные **хиты**, ассоциированные с данным треком. Работа фильтра состоит в повторении последовательности шагов:
- Состояние трека и ковариационная матрица его параметров, полученная на предыдущем шаге, экстраполируются до точки наилучшего приближения (PCA) к следующему хиту
- 2. На основе ковариационной матрицы хита и экстраполированной ковариационной матрицы трека вычисляется весовая матрица (т.н. *Kalman gain*)
- Экстраполированное состояние трека и его ковариационная матрица корректируются (фильтруются) с учетом данного хита и весовой матрицы. Вычисляется χ² хита относительно обновленного состояния трека

Трек частицы и виртуальная детекторная плоскость, проходящая через проволочку и ортогональная треку в точке его наибольшего к ней приближения. Параметризация плоскости задается координатами v (вдоль проволочки) и u (перпендикулярно ей).

- Экстраполяция трека на каждом шаге производится с учетом вклада материальных эффектов (многократное рассеяние и потери энергии) в ковариационную матрицу параметров трека, что *требует воспроизведения в фиттере геометрии и вещества детектора*
- В качестве места, до которого на очередном шаге экстраполируется трек, в случае ДК выступает т.н. виртуальная детекторная плоскость (ВДП), содержащая ось проволочки и точку наибольшего к ней приближения (РСА) экстраполируемого трека. Очевидно, что ВДП ортогональна направлению трека в РСА, а её пересечение с дрейфовым цилиндром проволочки дает два хита. Возникающая из-за этого неопределенность лево-право разрешается в процессе фита, например, выбором ближайшего из них к экстраполированному состоянию

Фит трека с фильтром Калмана в визуализаторе GenFit

Фит трека с фильтром Калмана в визуализаторе GenFit

Фит трека с фильтром Калмана в визуализаторе GenFit

Трек, аппроксимированный фильтром Калмана (красная линия). Пары левых и правых хитов для наглядности соединены синими стрелками.

Импульсные и угловые разрешения дрейфовой камеры

Совместная реконструкция треков во внешнем и внутреннем трекере

Совместная реконструкция треков во внешнем и внутреннем трекере

• Разрешения по параметрам трека (p=1 ГэВ/с, $\theta=\pi/2$ рад), реконструированного только по ДК, и по ДК вместе с ТРС:

Сшивка сигналов с двух концов проволчки

- После нахождения наборов пиков в оцифрованных амплитудах с двух концов проволочки производится их «сшивка» путем определения времени сдвига между ними
- Это время определяется нахождением максимума взаимно-корреляционной функции двух амплитуд
- После выравнивания ٠ сигналов ПО времени производится пар имеющих сшивка ПИКОВ, максимальное перекрытие. Оставшиеся неспаренными ПИКИ считаются ШУМОВЫМИ И отбрасываются

Измерение координаты вдоль проволочки

- Координата вдоль проволочки может быть вычислена по формуле деления заряда на основе:
 - 1. Полных проинтегрированных амплитуд;
 - 2. Сумм амплитуд в «сшитых» пиках.
- Другим способом является использование времени сдвига между сигналами с двух концов проволочки – это дает лучшее разрешение ~20 мм
- Реконструированная по времени сдвига координата имеет «гребенчатую» структуру, период которой определяется частотой дискретизации

