

Physics at Super *c*-τ factory

Vitaly Vorobyev

BINP, NSU

«International school on muon dipole moments and hadronic effects» September 20th 2018, BINP, Novosibirsk

Charm quark and tau lepton

- > Charm quark
 - The only heavy up-quark forming hadron systems
 - $\circ~$ Open charm
 - * Mesons: $D^{0,+}(c\bar{q})$ with $q\in\{u,d\},\,D_s(c\bar{s})$
 - * Baryons: $\Lambda_c^+(udc)$, $\Xi_c^+(usc)$, ...
 - $_{\odot}\,$ Hidden charm

 - * Charmonium-like states: X, Y, Z
 - * Pentaquarks $P_c(4450)^+$ and $P_c(4380)^+$ [Phys. Rev. Lett. 115 (2015) 072001]
- > Tau lepton
 - Heaviest lepton
 - $\,\circ\,$ Tens of decay channels
 - $\circ~$ The only lepton decaying into hadrons

Standard Model of Elementary Particles

Experiments in charm (and tau)

Q: Do we need a new generation threshold experiment?

A: Yes.

Super c- τ factory: energy range

V. Vorobyev, September 20th 2018, BINP

5

scienceblogs.com

e

e+

Super $c\text{-}\tau$ factory: the BINP project

Wiggler

- Beam energy: from 1 to 3 GeV

 L = 10³⁵ cm⁻²c⁻¹ @ 2 GeV

 Beam size in interaction region
 20 μm × 0.2 μm × 10 mm
 - > Longitudinal polarization of electron beam
 - Crab-waist collisions (P. Raimondi, 2006)
- > 104 accelerating units

Siberian snakes

> 52 klystrons

RF system

> 440 meters of linear accelerators

Wiggler

Crab-

sextuple

Interaction

region

Crab-

sextuple

Wiggler

Advantages of threshold production

- Clean environment: ~2 times less final-state particles then at *B*-factories
- Kinematic constraints

$$m_{\rm bc} = \sqrt{E_{\rm beam}^2 - p^2(D)}$$

- Full event reconstruction (double tag) technique
 - \circ Measurement of absolute branching fractions
 - \circ Strong background suppression
 - \circ Reconstruction of missing energy
- > Low ISR backgrounds in τ decays analysis
- > Quantum correlations in $D^0\overline{D}^0$

[BESIII, Phys. Lett. B744, 339 (2015)]

Physics program of Super $c\text{-}\tau$ factory

Budker Institute of Nuclear Physics Siberian Branch Russian Academy of Sciences (BINP SB RAS)

Super Charm - Tau Factory

CONCEPTUAL DESIGN REPORT PART ONE (physics program, detector)

[very preliminary draft]

Novosibirsk - 2018

Conceptual design report ctd.inp.nsk.su

Charmonium

- > Spectroscopy
- > Decays
- > Light states in J/ψ decays

Charm mesons

- > Spectroscopy
- \succ Decays
- Charm mixing
- CP symmetry violation

Charm baryons

- > Spectroscopy
- > Decays
- \succ *CP* symmetry violation

τ lepton

- Michel parameters
- > Spectral functions
- \succ *CP* symmetry violation
- Lepton number conservation test
- Lepton flavor universality test

Two-photon physics

- Search for C-even resonances
- $\sigma(\gamma\gamma \rightarrow \text{hadrons})$

$\sigma(e^+e^- \rightarrow \text{hadrons})$

 \neg

τ physics (some examples)

> Leptonic τ decays

- Lepton flavor universality test
- Lorentz structure of charged current
- > Hadronic τ decays
 - Spectral functions
 - \circ Second class currents
- > Lepton number violating decays

Leptonic τ decays I

Lepton flavor universality test

$$\tau^{-} \rightarrow l^{-} \bar{\nu}_{l} \nu_{\tau}$$

$$\Gamma(\tau^{-} \rightarrow \nu_{\tau} l^{-} \bar{\nu}_{l}) = \frac{G_{\tau} G_{l} m_{\tau}^{5}}{192\pi^{3}} f\left(\frac{m_{l}^{2}}{m_{\tau}^{2}}\right) r_{\rm EW}$$

$$r_{\rm EW} \approx 0.9915, f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \ln x, \ G_{l} = \frac{g_{l}^{2}}{4\sqrt{2}m_{W}^{2}}$$

Parameter	Calculation	Best measurement
$\underline{\mathcal{B}(\tau^- \to \nu_\tau \mu^- \bar{\nu}_\mu)}$	0.972564 ± 0.000010	$0.9796 \pm 0.0016 \pm 0.0036$
$\mathcal{B}(\tau^- \to \nu_\tau e^- \bar{\nu}_e)$		[BaBar, PRL 105 (2010) 051602]

> A Super *c*- τ factory experiment can reach smaller systematic uncertainty

Leptonic τ decays II

Michel parameters

$$\frac{d\Gamma(\tau^{\mp})}{d\Omega dx} \propto x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \mp P_{\tau}\cos\theta_l\,\xi\sqrt{x^2 - x_0^2} \left[1 - x + \frac{2}{3}\delta\left(4x - 4 + \sqrt{1 - x_0^2}\right)\right],$$

> Standard model weak charged current (V - A) implies $\rho = \frac{3}{4}, \quad \eta = 0, \quad \xi = 1, \quad \delta = \frac{3}{4}.$

- > Michel parameters can be measured at *B*-factories using spin-spin correlations of $\tau^+\tau^-$ pairs it's a complex 6D analysis!
- A Super *c*-τ factory with polarized *e⁻* beam allows one to measure Michel parameters with analysis of single τ decays

Hadronic τ decays

Spectral functions (SFs)

 $\frac{d\Gamma(\tau^- \to \text{had } \nu_{\tau})}{d(\text{phsp})} = \frac{G_F^2}{4m_{\tau}} |V_{\text{CKM}}|^2 L_{\mu\nu} H^{\mu\nu}$

- Factorization of hadronic and leptonic currents
- > SFs are sensitive to $|V_{ud}|$, $|V_{us}|$, $\alpha_s(m_\tau)$ and m_s
- > Testing conservation of vector current (CVC)
- Information about hadronic vacuum polarization

Second class currents $J^{PG} = 0^{+-} (a_0), 1^{++} (b_1), ...$

> Isospin suppressed decays $(\tau \rightarrow \eta^{(\prime)} \pi \nu, ...)$

[Rev. Mod. Phys. 78 (2006) 1043]

Forbidden τ decays

 $\tau
ightarrow \mu \gamma$

- Exists in many scenario of new physics (supersymmetry, leptoquarks, technicolor, additional Higgs bosons, ...)
- > Main backgrounds
 - $\circ \quad \tau \to \mu \nu \nu + \text{ISR photon}$
 - $\circ \quad \tau \to \mu \gamma \nu \nu$
 - $\tau \rightarrow \pi \nu$ + ISR or beam photon

Threshold kinematics matters

- > Expected experimental limits on $\tau \rightarrow \mu \gamma$ branching \circ Belle II: $O(10^{-9})$
 - Super c- τ factory: $\mathcal{O}(10^{-10})$

Charm physics (some examples)

- > Charm mesons
 - \circ (Semi-)leptonic decays
 - \circ Spectroscopy
 - *CP* symmetry breaking
 - Dynamics of multibody decays

> Charmonium

- Spectroscopy including $c\bar{c}$ -like states
- Rare J/ψ decays

> Quantum correlations

- Phases of decay amplitudes
- Charm mixing

Absolute branching fractions

- LHCb can measure only *relative* branching fractions
- Many *absolute* branching fractions need to be measured at a threshold experiment

$$D^{0} \to K^{-}\pi^{+}$$
$$D^{+} \to K^{-}2\pi^{+}$$

$$D^{+} \rightarrow K^{-}2\pi^{+}$$

$$D_{s}^{+} \rightarrow K^{-}K^{+}\pi^{+}$$

$$D_{s}^{+} \rightarrow 3\pi X$$

$$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$$

$$\Xi_{c}^{+} \rightarrow pK^{-}\pi^{+}$$

$$\Xi_{c}^{0} \rightarrow p2K^{-}\pi^{+}$$

$$\Omega_{c}^{0} \rightarrow p2K^{-}\pi^{+}$$

$$\cdots$$

[LHCb, Phys. Rev. D85 (2012), 032008]

Systematics on $f_{\Lambda_b}/(f_u + f_d)$.								
Source	Error (%)							
Bin dependent errors	2.2							
$\mathcal{B}(\Lambda_{b}^{00} ightarrow D^{0}pX\mu^{-}\overline{ u})$	2.0							
Monte Carlo modelling	1.0							
Backgrounds	3.0							
Tracking efficiency	2.0							
$\Gamma_{\rm sl}$	2.0							
Lifetime ratio	2.6							
PID efficiency	2.5							
Subtotal	6.3							
$\mathcal{B}(\Lambda_c^{++} \to \rho K^- \pi^+)$	26.0							
Total	26.8							

Measurement idea

- > «Single tag» events $y_j = N_{D\overline{D}} \mathcal{B}_j \epsilon_j$
- > «Double tag» events $y_{i\bar{j}} = N_{D\bar{D}} \mathcal{B}_i \mathcal{B}_j \epsilon_{i\bar{j}}$

> The branching fraction $\mathcal{B}_{i} = \frac{y_{i\bar{j}}}{y_{\bar{l}}} \frac{\epsilon_{\bar{j}}}{\epsilon_{i\bar{l}}} \approx \frac{y_{i\bar{j}}}{\epsilon_{i}y_{\bar{l}}}$

Leptonic $D^+_{(s)}$ decays

$$D_{(s)}^{+} \rightarrow l\nu$$

$$\Gamma(D^{+} \rightarrow l\nu) = \frac{G_{F}^{2}}{8\pi} f_{D}^{2} m_{l}^{2} m_{D} \left(1 - \frac{m_{l}^{2}}{m_{D}^{2}}\right) |V_{cd}|^{2}$$

$$D^{+} \int_{\overline{d}} \int_{D} V_{cd} g_{l}$$

Parameter	Calculation	Best measurement	Super <i>c</i> - <i>τ</i> factory
f_D	$202.3 \pm 2.2 \pm 2.6$	$203.2 \pm 5.3 \pm 1.8$ (BESIII)	$Y \pm 0.x$
f_{D_S}	$258.7 \pm 1.1 \pm 2.9$	$255.5 \pm 4.2 \pm 5.1$ (Belle)	$Y \pm 0.x$
f_{D_s}/f_D	1.2788 ± 0.0264	$1.26 \pm 0.05 \pm 0.03$	$Y \pm 0.00x$

Lattice QCD calibration

1+

 ν_l

 W^+

Example: $D_s^+ \to \tau^+ \nu, \tau^+ \to e^+ \nu_e \bar{\nu}_{\tau}$

- ➢ Belle @ 913 fb⁻¹
- Signal / Background ~ 1 / 1

[CLEOc, PRD 79 (2009), 052002]

- ➢ CLEOc @ 600 pb⁻¹ @ 4.17 GeV
- Signal / Background > 10 / 1

Direct \mathcal{CP} violation in charm

Direct \mathcal{CP} violation

(At least) two interfering amplitudes with different «strong» and «weak» phases needed

$$A(D \to f) = a_1 e^{i(\varphi_1 + \delta_1)} + a_2 e^{i(\varphi_2 + \delta_2)}$$

$$A(\overline{D} \to \overline{f}) = a_1 e^{i(-\varphi_1 + \delta_1)} + a_2 e^{i(-\varphi_2 + \delta_2)}$$

where φ_i are weak phases and δ_i are strong phases

$$\mathcal{A}_{CP} \equiv \frac{\mathcal{B}(D \to f) - \mathcal{B}(\overline{D} \to \overline{f})}{\mathcal{B}(D \to f) + \mathcal{B}(\overline{D} \to \overline{f})} \propto \sin \Delta \varphi \sin \Delta \delta$$

- Super c- τ factory prospects
 - $_{\odot}$ Reaching the $\mathcal{O}(10^{-4})$ precision level
 - \circ Measurements in many different final states

- Standard model expectations
 - Zero weak phase in allowed and doubly suppressed transitions
 - $_{\odot}$ Very small weak phase in singly suppressed transitions leading to $\mathcal{A}_{CP} \lesssim 10^{-3}$

Quarkonium(-like) spectroscopy

> Super c- τ factory is a laboratory for presicion study of the $c\bar{c}$ -like states

That's all?

- > No. Many topics has not been mentioned (rare charmonia decays, baryon physics, CP violation in τ and baryon decays, search for glueballs, two-photon physics, ...)
- > Some references for further reading
 - arXiv:hep-ex/0309021 «A Cicerone for the Physics of Charm», S. Bianco, F. L. Fabbri, D. Benson, I. Bigi
 - arXiv:hep-ph/0507078 «The Physics of Hadronic Tau Decays», M. Davier, A. Hocker, Z. Zhang
 - \circ arXiv:1310.7922 [hep-ph] «Precision Tau Physics», A. Pich
 - $\circ \underline{\text{Super } c\text{-}\tau \text{ factory } \text{CDR}}$
 - \circ <u>BES-III physics book</u>
- > Recent workshops on Super c- τ factories
 - o <u>BINP</u>, December 2017
 - o Beijing, March 2018
 - 0 <u>BINP, May 2018</u>

Conclusions

- \checkmark A Super $c\text{-}\tau$ factory experiment has a broad and diverse physics program
- ✓ Super c- τ factory complements the Belle II and LHCb experiments
 - Quantum correlations
 - Absolute branching fractions of charm hadrons
- ✓ The Super c- τ factory project is a challenge for the new generation of HEP community

Back-up

Detector for Super c- τ factory (concept)

Requirements

- > Occupancy 300 kHz
- Good energy and momentum resolution
- High detection efficiency of soft tracks
- > Best possible π/K and π/μ separations
- > Minimal CP detection asymmetry

✓ A high-end universal particle detector

Super *c*- τ factory: yields and data flow

Luminosity

$$\mathcal{L} = f \frac{n_1 n_2}{2\pi \sigma_x \sigma_y} = 10^{35} \text{ s}^{-1} \text{cm}^{-2}$$

Cross-sections @ 3.8 GeV

 $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 2.9 \text{ nb}$ $\sigma(e^+e^- \rightarrow D^0\overline{D}^0) = 3.6 \text{ nb}$ $\sigma(e^+e^- \rightarrow D^+D^-) = 2.9 \text{ nb}$ $1 \text{ nb} = 10^{-33} \text{ cm}^2$

> Annual yield

$$\begin{split} N_{\tau\tau} &= 10^7 \text{ s} \times 10^{35} \text{ s}^{-1} \text{cm}^{-2} \times 2.9 \text{ nb} \approx 3 \times 10^9 \\ N_{D\overline{D}} &\approx 6.5 \times 10^9 \end{split}$$

Data flow and dataset volume

- > Max frequency of event recording 300 kHz @ J/ψ
- Event size

 $30 \div 50 \text{ kB}$

- > Number of recorded events 2×10^{12}
- > Dataset size

100 PB (Peta -10^{15})

Computing cluster
 0.6 Pflop

Coherent $D^0\overline{D}^0$ pairs production

 $e^+e^- \to \gamma^* \to D^0 \overline{D}{}^0, \qquad \mathcal{C}(D^0 \overline{D}{}^0) = -1$ $\langle ij|\mathcal{H}|D^0 \overline{D}{}^0 \rangle \propto \langle i|\mathcal{H}|D^0 \rangle \langle j|\mathcal{H}|\overline{D}{}^0 \rangle + \mathcal{C} \langle i|\mathcal{H}|\overline{D}{}^0 \rangle \langle j|\mathcal{H}|D^0 \rangle$

Measurement of phase parameters – a crucial input for some measurements at Belle II and LHCb

$$\delta_{K\pi} \equiv \arg\left(\frac{\mathcal{A}(\overline{D}^0 \to K^- \pi^+)}{\mathcal{A}(D^0 \to K^- \pi^+)}\right)$$

- $\circ\,$ Coherence factors and average phases for multibody decays
- \circ Parameters C_i and S_i from model-independent analysis of $D^0 \to K^0_S \pi^+ \pi^-$ decay
- > Time-integrated measurement of charm mixing
- > Unique techniques for *CP* violation studies

CKM mechanism

The CKM matrix

The unitary matrix of quark mixing for charged weak currents (Cabibbo, Kobayashi and Maskawa, CKM)

 $\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$

- Four independent parameters
- Can be parametrized with three Euler angles and single phase.

$$\mathcal{L} \propto -\frac{g}{\sqrt{2}} (\bar{u}_L, c_L, \bar{t}_L) \gamma^{\mu} W^+_{\mu} V_{CKM} (d_L, s_L, b_L)^T + h.c.$$

Charm mixing (in a nutshell)

- > Mass eigenstates $\left|D_{1,2}\right\rangle = p |D^0\rangle \pm q |\overline{D}{}^0\rangle, \qquad |p|^2 + |q|^2 = 1$
- > Charm mixing parameters

$$x \equiv \frac{m_2 - m_1}{\Gamma}, \qquad y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}, \qquad \Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2}$$

> Observable parameter

$$\lambda_f \equiv \frac{q}{p} \frac{\bar{\mathcal{A}}_f}{\mathcal{A}_f}, \qquad \mathcal{A}_f \equiv \langle f | \mathcal{H} | D^0 \rangle, \qquad \bar{\mathcal{A}}_f \equiv \langle f | \mathcal{H} | \overline{D}^0 \rangle$$

Charm mixing at Super c- τ factory

> Quantum correlations in action

 $\Gamma(K^{-}\pi^{+}, K^{+}\pi^{-}) \propto |A_{K\pi}|^{4}(1 - r_{K\pi}^{2})^{2}$ $\Gamma(K^{-}\pi^{+}, X) = |A_{K\pi}|^{2}[1 + 2yr_{K\pi}\cos\delta_{K\pi} + r_{K\pi}^{2}]$

- \circ Many more relations with $\mathcal{CP}\text{-specific}$ and multibody D^0 decays (see PRD 73 (2006) 034024)
- $\,\circ\,$ This approach allows one to measure charm mixing together with phase $\delta_{K\pi}$
- There are other methods to measure charm mixing at Super *c*-τ factory
- Super *c*-τ factory is competitive with Belle II and LHCb in measurement of charm mixing

$$r_{K\pi} \cdot e^{i\delta_{K\pi}} \equiv \frac{\mathcal{A}(\overline{D}^0 \to K^-\pi^+)}{\mathcal{A}(D^0 \to K^-\pi^+)}$$
$$\mathcal{A}(D^0 \to K^-\pi^+) \equiv A_{K\pi}$$

V. Vorobyev, September 20th 2018, BINP

Charm mesons spectroscopy

- > Observables
 - $\,\circ\,$ Exclusive and inclusive cross-sections
 - $_{\odot}$ Decay branching fractions
- > Example: $D_{s0}^{*}(2317)$ и $D_{s1}(2460)$
 - $\circ\,$ Masses are about 50 MeV lower then predicted by potential models
 - Decays with final-state neutrals (not accessible for LHCb)
 - \circ Nature of these states is still not clear

Dynamics of multibody decays

 $D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ $P^{0}\pi^{+}\pi^{-}$ $D^{0}\pi^{+}\pi^{-}$ $P^{0}\pi^{+}\pi^{-}$ $P^{0}\pi^{+}\pi^{-}$ $P^{0}\pi^{+}\pi^{-}$

 $\,\,>\,\,$ Only probability density $|A(m_+^2,m_-^2)|^2$ is observable

> Isobar approach for amplitude parameterization

 $A(m_{+}^{2}, m_{-}^{2}) = \sum a_{i}F_{i}(m_{+}^{2}, m_{-}^{2})$ $F_{j}(L, s,) = R_{j}(s) \times F_{D} \times F_{R} \times T_{j}(L, \vec{p}_{D}, \vec{p}_{R})$ Resonance term (Breit-Wigner) Formfactors Angular distribution
amplitude model obtained can be used in other others.

 The amplitude model obtained can be used in other measurements (ex. CKM phases β and γ, charm mixing)

Lepton flavor universality violation

3(

Collider parameters

Energy	1.0 GeV	1.5 GeV	2.0 GeV	2.5 GeV									
Circumference	813.1 m												
Emittance hor/ver	8 nm/0.04 nm @ 0.5% coupling												
Damping time hor/ver/long	50/50/25 ms 30/30/15 ms												
Bunch length	21 mm	21 mm 12 mm 10 mm 10											
Energy spread	8.7.10-4	11.10-4	9.3·10 ⁻⁴	7.2.10-4									
Momentum compaction	8.73·10 ⁻⁴	8.81.10-4	8.82·10 ⁻⁴	8.83.10-4									
Damping wiggler field	50 kGs	50 kGs	35 kGs	10 kGs									
Synchrotron tune	0.007	0.012	0.009	0.008									
RF frequency	499.95 MHz												
Harmonic number	1356												
Particles in bunch	7·10 ¹⁰												
Number of bunches	406 (10% gap)												
Bunch current	4.2 mA												
Total beam current	1.7 A												
Beam-beam parameter	0.135	0.135	0.121	0.097									
Luminosity	0.6·10 ³⁵	0.9·10 ³⁵	1.0·10 ³⁵	1.0.1035									

Status of the Super $c\text{-}\tau$ factory project

- In June 2017, the SCT project is included in the plan for the implementation of the first phase of the Strategy for Scientific and Technological Development of the Russian Federation
- In August, 2017, the Russian Ministry of Education and Science and Budker Institute signed an agreement for an amount of about 0,25 bln. Rbls, which foresees the development and upgrade of the accelerator complex of BINP and the creation of scientific and technical groundwork for the implementation of the SCT

	Year 1			Year 2				Year 3				Yea	ar 4	4	Year 5				Year 6					
Formation of management																								
Accelerator complex																								
Research																								
R&D																								
Prototyping & testing																								
Manufacturing																								
Assembling																								
Commissioning																								
Reaching the design																								
parameters				L				L		L				L			_		_	_	_		_	
Detector																								
R&D																								
Manufacturing, assembling, and testing																								
Mounting and					Γ	Γ		Γ	Τ	Γ		Γ	Γ	Γ	Γ									
commissioning								L		L				L										
Software development				_	_	_		_				_	_		_				_	_	_			
Building infrastructure																								
Design and research																								
Construction																								

