

Achim Denig

Institute for Nuclear Physics PRISMA Cluster of Excellence

Johannes Gutenberg University Mainz

Measuring the Hadronic Contribution to (g-2)_μ <u>Part I: R_{had} Measurements</u>

International School on Muon Dipole Moments and Hadronic Effects BINP Novosibirsk, Sept 17 - 21, 2018

Achim Denig

Describes 3 of the 4 fundamental interactions, i.e. forces:

- electromagnetic force
- weak nuclear force
- strong force

Describes 3 of the 4 fundamental interactions, i.e. forces:

- electromagnetic force
- weak nuclear force
- strong nuclear force QCD Quantum Chromo Dynamics
- Image: Non-State
 Image: Non-State

 Image: Non-State
 Image: Non-State

"for the discovery of **asymptotic freedom** in the theory of the **strong interaction**"

Achim Denig

$$R = \frac{\sigma^{(0)}(e^+e^- \rightarrow \text{hadrons})}{\sigma^{(0)}(e^+e^- \rightarrow \mu^+\mu^-)}$$

R lead to formulation of Standard Model

- Number of colours N_c = 3
- Number of quark flavours N_f

The R Ratio

The R Ratio

Describes 3 of the 4 fundamental interactions, i.e. forces:

- electromagnetic force
- weak nuclear force
- strong nuclear force QCD Quantum Chromo Dynamics

Low Energy Frontier

The World of Hadrons as bound objects of quarks

Achim Denig

Part I: R Measurements

Search for New Physics

High Energy Frontier Precision Frontier

Part I: R Measurements

Achim Denig

$$R = \frac{\sigma^{(0)}(e^+e^- \rightarrow \text{hadrons})}{\sigma^{(0)}(e^+e^- \rightarrow \mu^+\mu^-)}$$

R helps to overcome hadronic uncertainties

- running EM fine structure constant
- anomalous magnetic moment of muon

Hadronic Cross Section via Energy Scan JGU

 R measurements and the Standard Model of Particle Physics

- The "running" fine structure "constant"
- The anomalous magnetic moment of the muon
- R measurements via energy scan at Novosbirsk
- R measurements via Intial State Radiation
- Summary (today)

Tomorrow: Meson transition form factors

Motivation for R_{had}: The Fine Structure constant α_{EM}(M_Z²)

Hadronic Cross Section Data and $\alpha_{em}(M_Z^2)$

Running of α_{em} (s) with s due to vacuum polarization corrections

- Leptonic Vacuum Polarization calculable within QED
- Hadronic Vacuum Polarization not accessible in pQCD
 → Dispersion relation

$$\alpha_{\rm em}(s) = \frac{\alpha(0)}{(1 - \Delta \alpha_{\rm em}(s))} \qquad \alpha^{-1}(M_Z^2) = 128.947 \pm 0.012$$
Davier, et al.(2017)

QED
$$\Delta \alpha_{\text{lep}}(M_Z^2) = 314.97686 \cdot 10^{-4}$$

strong $\Delta \alpha_{\text{had}}(M_Z^2) = (275.3 \pm 0.9 \cdot 10^{-4})$

Electroweak Precision Physics

$\alpha_{em}(M_Z^2)$ limiting electroweak precision fits

- → Test overall consistency of the electroweak Standard Model
- \rightarrow Since the discovery of the Higgs boson more timely than ever

Hadronic Cross Section and $\alpha_{em}(M_Z^2)$

7= Int Pz $S = P^{\chi}$ P 73 HVP contribution $\pi(p^2) = \pi(s)$ $\frac{ie^{2}}{s} \overline{V(2)} \chi^{\mu} \mu(n) \overline{V(4)} \chi_{\mu} \mu(3) \left(\Lambda + \overline{T(3)} \right)$ TT (S) $\frac{\chi(c)}{1+2\chi(s)}$ (*) $= \mathcal{O} \mathcal{K}(s) =$ $D\alpha(s) \equiv -Re\left(\frac{\pi(s)}{s}\right)$

JG U

Hadronic Cross Section and $\alpha_{em}(M_Z^2)$

Disperiou relations : follow and tical shafting functions $T(S) = \frac{S}{T} \int ds' \frac{\ln T(s')}{s'(s'-s-i\epsilon)}$ Smin Tr (5) - Tr(0) I Smin > O due to non-member querks Analytical contraction of s in the complex plane $\oint_{S} \frac{T(S')}{S'(S'-S)} = 0$ D Recs) SE

JGU

Hadronic Cross Section and $\alpha_{em}(M_Z^2)$

$$DV(S) = -Re\left(\frac{Tr(S)}{S}\right) = -\frac{S}{Tr}Re\left[ds'\frac{lm}{s'e}(s'-s-i\epsilon)\right]$$

$$nodice : \frac{\Lambda}{s'-s-i\epsilon} = \frac{1}{S'-s} + iS(s'-s)$$

$$\frac{1}{s'-s} + iS(s'-s)$$

$$\frac{1}{Tr}Re\left(\frac{Tr(S)}{s'-s-i\epsilon}\right) = \frac{1}{S'-s} + iS(s'-s)$$

$$\frac{1}{Tr}Re\left(\frac{Tr(S)}{s'-s}\right) = \frac{1}{Tr}Re\left[\frac{1}{s'-s}\right]$$

$$\frac{1}{Tr}Re\left[\frac{1}{s'-s}\right] = \frac{1}{Tr}Re\left[\frac{1}{s'-s}\right]$$

$$\frac{1}{Tr}Re\left[\frac{1}{s'-s}\right]$$

IG

Hadronic Cross Section and $\alpha_{em}(M_Z^2)$

Optical Theorem : (in IICS') = $\frac{S^{2}}{4\pi d}$ Tet follows from condity Findly: $M = -\frac{S}{\pi} \frac{1}{4\pi d} P \int ds' \frac{5t_{ot}}{S'-S}$ (in $4m_{p}^{2}$ (***) had $R(s) = \frac{\int (e^{+}e^{-} - \frac{1}{2} \log \log n)}{\int (e^{+}e^{-} - \frac{1}{2} \log n)} = \frac{3s}{4\pi k^2} \frac{5}{4\pi k^2}$ $\Delta \mathcal{K} = -\frac{\mathcal{K}S}{3\tau_{1}}\int_{-\frac{1}{3}}^{\frac{1}{10}}\int_{-\frac{1}{3}}^{\frac{1}{10}}\frac{\frac{1}{10}}{\frac{1}{10}}\frac{\frac{1}{10}}{\frac{1}{10}}\frac{\frac{1}{10}}{\frac{1}{10}}$

JGU

Running Fine Structure Constant

- $\Delta \alpha_{had}^{(5)}$ is the hadronic vacuum polarization contribution of the five lightest quarks u,d,s,c,b
- Low and intermediate energy regions important in dispersion integral
 - ⇒ from which energy range on use pQCD?

[[]F. Jegerlehner ArXiv:0807.4206]

BEPC (1997 – 2004) : $\sigma_{incl}(e^+e^- \rightarrow Hadrons)$

arXiv:hep-ex/9908046 arXiv:hep-ex/0102003

27

Results

- 3-5 % statistical accuracy per scan point
- Systematic uncertainty: ~5 ...8%
- Major improvement of R
- Important QCD test
- Of utmost importance for $\alpha_{em}(m_Z^2)$

Part I: R Measurements

S. Eidelman @ g-2 workshop Mainz, 06/2018

1.84-3.05 GeV $R = 2.225 \pm 0.020 \pm 0.047 \ (R_{pQCD} = 2.18 \pm 0.02)$ V.V. Anashin et al., Phys. Lett. B770 (2017) 174 3.05-3.72 GeV $R_{uds} = 2.204 \pm 0.013 \pm 0.030 \ (R_{pQCD} = 2.16 \pm 0.01)$ V.V. Anashin et al., Phys. Lett. B753 (2016) 533; arXiv:1805.06235 Total (syst. error) 3.9% (2.4%) at low, 2.6% (1.9%) at high \sqrt{s} R measurement from 5 to 7 GeV in progress

 $R_{incl} = \sigma_{had}/\sigma_{\mu\mu}$ ratio with targeted 3% systematic accuracy (statistical error <<1%)

125 scan points with >10⁵ hadronic events each

 \rightarrow statistical error negligible

How good are Monte-Carlo generators to simulate hadronic events?

Motivation for R_{had}: Anomalous Magentic Moment of the Muon (g-2)_u

Magnetic Moment: $\vec{m} = \mu_B g \vec{s}$ $\mu_B: Bohr magneton, g: gyromagnetic factor ~ 2$ Muon Anomaly: $a_{\mu} = (g-2)_{\mu} / 2 = \alpha_{em} / 2\pi + ... = 0.001161....$

33

Achim Denig

Hadronic Vacuum Polarization (HVP)

37

Why there is no decay $e^+e^- \to \rho \to \pi^0\pi^0$

Hadronic Cross Section Measurements via Energy Scan from Novosibirsk

Overview Novosibirsk Results

- VEPP-2M collider: 0.36-1.4 GeV in c.m., L=2*10³⁰ cm⁻²s⁻¹ at 1 GeV
- Detectors CMD-2 (solenoidal B field) and SND (w/o B field)
- Integrated Luminosity collected by CMD-2 and SND: 70 pb⁻¹ to be compared to 6 pb⁻¹ in Orsay and Frascati at higher energies

• Radiative corrections with 0.3% uncertainty

Phys.Lett.B578(2003)285 JETP.Lett.82(2005)743 JETP.Lett.84(2006)413 PLB648(2007)78

Achim Denig

42

Overview CMD-2 Results

• CMD-2: $\pi^+\pi^- < 1\%$, higher multiplicities few % accuracy

• SND measurement of $\pi^+\pi^-$ with 1.2% accuracy

VEPP – 2000 Collider (since 2010)

CMS energy range is 0.32-2.0 GeV

unique optics – "round beams"

Design luminosity is $L=10^{32}/cm^2s@s=2GeV$

Experiments with two detectors, CMD-3 and SND

VEPP – 2000 Collider

44

CMD-3 Detector

Very compact multipurpose detector with high resolution tracking and detection of EM particles

46

U

IG

Overview CMD-3 Results

2 charged

$$e^+e^- \rightarrow \pi^+\pi^-, K^+K^-, K_SK_L, p\overline{p}$$

- 4 charged

$$e^+e^- \to \pi^+\pi^-\pi^+\pi^-, K^+K^-\pi^+\pi^-, K_SK^*$$

- 4 charged + γ 's $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0, \pi^+\pi^-\eta, \pi^+\pi^-\omega, \pi^+\pi^-\pi^0\pi^0, K^+K^-\eta, K^+K^-\omega$
- 6 charged

$$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$$

γ's only

$$e^+e^- \rightarrow \pi^0 \gamma, \eta \gamma, \pi^0 \pi^0 \gamma, \pi^0 \eta \gamma, \pi^0 \pi^0 \pi^0 \gamma, \pi^0 \pi^0 \eta \gamma$$

other

$$e^+e^- \rightarrow n\overline{n}, \pi^0 e^+ e^-, \eta e^+ e^-$$

Ivan Logashenko @ Phispsi18

47

CMD-3: Structure at the Nucleon Threshold ^{JG|U}

Structures seen in various cross section spectra at NN threshold

CMD-3: Structure at the Nucleon Threshold ^{JG|U}

Structures seen in various cross section spectra at NN threshold

- Subnucleon threshold?

arxiv: 1808.00145

SND Detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counters, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

Very compact multipurpose detector with high resolution detection of EM particles

51

1. $e^+e^- \rightarrow \pi^0\pi^0\gamma$, Phys.Rev.D, (2013)
2. $e^+e^- \rightarrow nn$, Phys.Rev.D,(2014)
3. $e^+e^- \rightarrow NN+6\pi$, JETP Lett.,(2014)
4. $e^+e^- \rightarrow \eta\gamma$, Phys.Rev.D,(2014)
5. $e^+e^- \rightarrow \eta'$, Phys.Lett.B,(2015)
6. $e^+e^- \rightarrow \eta \pi^+\pi^-$, Phys.Rev.D,(2015)
7. $e^+e^- \rightarrow \pi^+\pi^-\pi^0$, JETP,(2015)
8. $e^+e^- \rightarrow \eta$ JETP Lett.,(2015)
9. $e^+e^- \rightarrow \omega \eta \pi^0$, Phys.Rev.D,(2016)
10. $e^+e^- \rightarrow \omega \eta$, Phys.Rev.D,(2016)
11. $e^+e^- \rightarrow \pi^0 \gamma$, Phys.Rev.D,(2016)
12. $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$, Phys.Rev.D, (2016)
13. $e^+e^- \rightarrow K^+K^-$ Phys. Rev. D, (2016)

Tatyana Dimova @ Phispsi18

Achim Denig

Very rare and complicated decays attacked by VEPP-2000 experiments