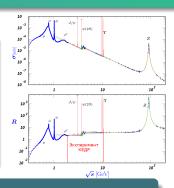
Результаты экспериментов с детектором КЕДР на коллайдере ВЭПП-4М

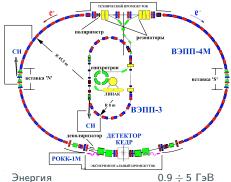
Тодышев Корнелий Юрьевич

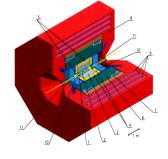
ИЯФ СО РАН


18 ноября 2025, ИЛФ СО РАН

Эксперимент КЕДР

Процесс e^+e^- -аннигиляции


- - Исследование эксклюзивных процессов
- – Измерение полного инклюзивного сечения e^+e^- -аннигиляции

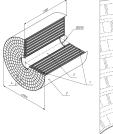


Физическая программа эксперимента КЕДР

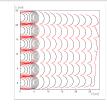
- Измерение масс элементарных частиц
 - Низкая энергия: $J/\psi, \psi(2S), \psi(3770), D^0, D^{\pm}, \tau$
 - Высокая энергия: $\Upsilon(1S), \Upsilon(2S)...$
- lacktriangle Измерение лептонных ширин ψ и Υ мезонов
- lacktriangle Измерение R в области $2\mathrm{E}=2\div 10$ ГэВ
- lacktriangle Измерение сечения $\gamma\gamma o$ адроны
- Исследование ряда других процессов

ВЭПП-4М и КЕДР

Энергия 0.9 \div 5 ГэВ Число сгустков 2 \times 2 Светимость (E=1.8 ГэВ) 1.5 \times 10 30 см $^{-2}$ с $^{-1}$

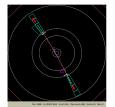

Рис. 1: Пенгральная часть, агенстора КЕДР 1 - вакуумная труба усхорителя, 2 - першинный детектор, 3 - дрейфовая камера, 4 - авроголеные порогомые счетчики, 5 - времипродітные счетчики, 6 - баррельный экцикокрититовный вкалориметр, 7 - епершироводинция вакутика, 8 - прию, 9 - мисониме камеры, 10 - торценой СкI калориметр, 11 - компенсирующая какутика.

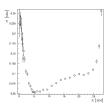
Измерение энергии методом резонансной деполяризации:


Тушековский поляриметр (внутрисгустковое рассеяние), точность измерения $\sim 1 \times 10^{-6}$, точность интерполяции (10-50 кэВ).

Лазерный поляриметр при E>3 ГэВ: Измерение ассиметрии рассеяния поляризованных фотонов лазерного излучения, $\sim 1.5 \times 10^{-6}/\ 20$ мин, систематическая неопределённость ~ 10 кэВ.

Калибровка дрейфовой камеры

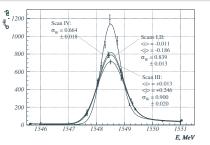



1512 анодных проволочек

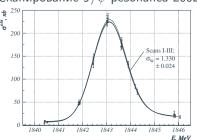
- 4 аксиальных (A) +3 стереослоя (S)
- 6 анодных проволочек в ячейке.

Рабочий газ диметиловый эфир.

Событие от космической частицы в детекторе КЕДР.



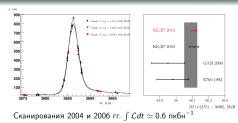
Пространственное разрешение от расстояния дрейфа ионизации


(3) проволочек в яченке

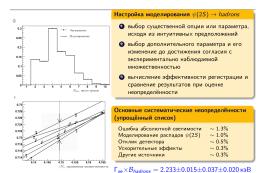
- Разработано моделирование срабатываний дрейфовой камеры и вершинного детектора.
- Разработана процедура калибровки ДК.
- Достигнуто пространственное разрешение около 100 мкм.
- Проведено более 600 калибровок ДК на протяжении всего эксперимента КЕДР.

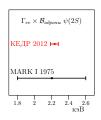
Измерение массы J/ψ - и $\psi(2S)$ - мезонов

Сканирование J/ψ -резонанса 2002 г.

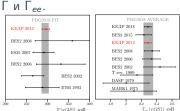


Ruc 2008 Typed Estated Mary Held Stills Raw applied 2012 Towns 12 No.

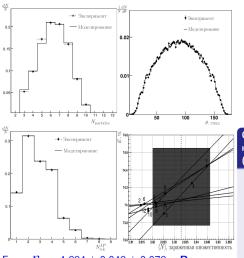

Событие рождения адронов в детекторе КЕДР(сканирование J/ψ –резонанса)


Сканирование $\psi(2S)$ -резонанса 2002 г.

Измерение параметров $\psi(2S)$ - мезона

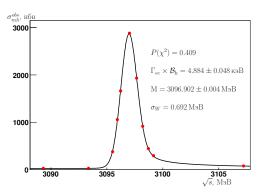


 $M=3686.114\pm0.007 {
m (стат.)}\pm0.011 {
m (сист.)}^{+0.002}_{-0.012} {
m (мод.)}\,{
m MэB}$

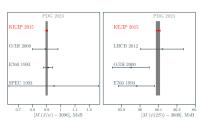


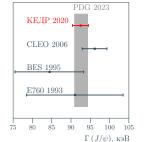
Используя данные $\mathcal{B}^{PDG}_{hadrons}$ и \mathcal{B}^{PDG}_{ee} , были определены

Измерение $\Gamma_{ee} \times \mathcal{B}_h J/\psi$ -резонанса

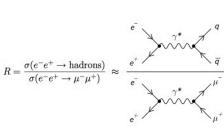


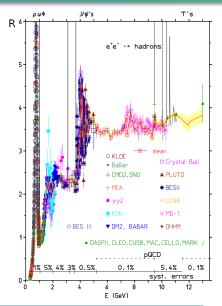
Основные систематические неопределённости (упрощённый список)


6
1
0
6
6
6
6
× × ×

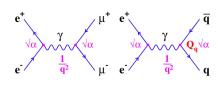

Измерение масс и ширин J/ψ - и $\psi(2S)$ - мезонов

Наблюдаемое сечение рождения адронов в зависимости от энергии при сканировании J/ψ -резонанса.


Измеряемые параметры: масса, полная и парциальные ширины резонанса.


Для J/ψ и $\psi(2S)$ с наилучшей точностью измерены величины: M, Γ , Γ_{ee} , $\Gamma_{hadrons}$, $\Gamma_{ee} \times \mathcal{B}_{hadrons}$, $\Gamma_{ee} \times \mathcal{B}_{ee}$, $\Gamma_{uu} \times \mathcal{B}_{ee}$.

Мотивация эксперимента по измерению величины R(s)



R(s) используется для вычисления:

- $\alpha(M_Z^2)$
- $(g_{\mu}-2)/2$
- $\alpha_s(s)$
- масс тяжёлых кварков

Величина R и поляризация вакуума

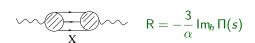
$$\sigma_0^{e^+e^- \to \mu^+\mu^-}(s) = \frac{4\pi\alpha^2}{3s}$$

Естественно определить:

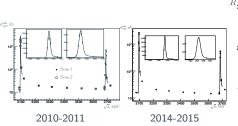
$$\mathsf{R} \stackrel{\mathrm{def}}{\equiv} \frac{\sigma^{\mathsf{e}^{+}\mathsf{e}^{-} \to \mathit{hadrons}}(s)}{\sigma_{\mathsf{0}}^{\mathsf{e}^{+}\mathsf{e}^{-} \to \mu^{+}\mu^{-}}(s)}$$

В первом приближении:

$$R(s) \simeq 3 \sum Q_a^2$$


X – адронное состояние.

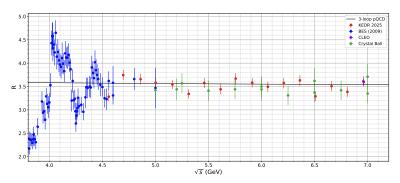
$$\sigma^{e^+e^- o hadrons}(s) = R\sigma_0^{e^+e^- o \mu^+\mu^-}(s)$$


Диаграмма процесса $e^+e^- \rightarrow e^+e^-$

Соотношение между величиной R и вакуумной поляризацией

Измерение величины R в диапазоне энергии от 1.84 до 3.72 ГэВ

R 3.5 ADONE μx Mark II MARK I+GIW A Mark I PLUTO ADONE-MEA BES(2009) BES(2009) BES(2000) BES(2000) BES(2002) BES(2002) BES(2002) BES(2002) R Using CMD-3, SND and BaBar exclusive data 0.5 $pQCD + J/\psi \text{ and } \psi(2S) \text{ conributions}$


Скан.	Диапазон энергии	N _{points}	∫ <i>Ldt</i> πκ6н ^{−1}
	энергии		пкон
2010	1.84-3.05	13	0.66
2011	3.08-3.72	9	2.7
2014-2015			
2019-2020	4.56-6.96	17	13.7

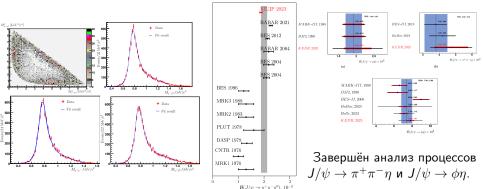
Сравнение результатов измерения R различных экспериментов

1.84-3.08 ГэВ:
$$\overline{R}_{uds}^{\text{KEДP}} = 2.213 \pm 0.013 \pm 0.037 \; (R_{uds}^{pQCD} = 2.17 \pm 0.02)$$
 3.11-3.72 ГэВ: $\overline{R}_{uds}^{\text{KEДP}} = 2.205 \pm 0.014 \pm 0.026 \; (R_{uds}^{pQCD} = 2.16 \pm 0.01)$

Предварительные результаты измерения R при $2E = 4.56 \div 6.96$ ГэВ

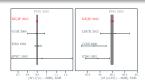
• Интегральная светимость $13.7~\rm{n}\kappa6^{-1}$ набрана в 17-ти точках по энергии.

Величина R в зависимости от энергии. Полная ошибка около 3% (систематическая неопределённость 2.4%).


4.56-6.96 ГэВ
$$\overline{R}_{\rm предварительно}^{\rm KEДP} = 3.51 \pm 0.02 \pm 0.05, \ R^{pQCD} = 3.56 \pm 0.02$$

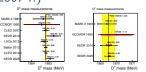
Измерение вероятностей распадов

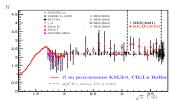
$$J/\psi o \pi^+\pi^-\pi^0$$
 и $J/\psi o
ho\pi$


• Измерены величины вероятностей процессов $J/\psi \to \pi^+\pi^-\pi^0$ и $J/\psi \to \rho^0\pi^0$. Получены следующие результаты:

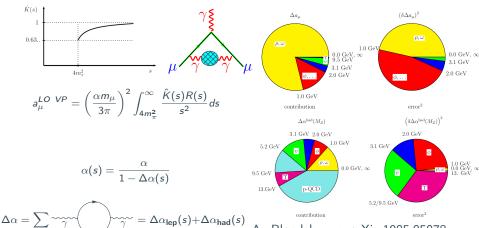
$$\mathcal{B}(J/\psi \to \rho \pi) = (2.072 \pm 0.017 \pm 0.062) \times 10^{-2}$$

 $\mathcal{B}(J/\psi \to \pi^+ \pi^- \pi^0) = (1.878 \pm 0.013 \pm 0.051) \times 10^{-2}$


Результаты эксперимента КЕДР на ВЭПП-4М


 \checkmark С лучшей в мире точностью измерены величины: M, Γ , Γ_{ee} , $\Gamma_{hadrons}$, $\Gamma_{ee} \times \mathcal{B}_{hadrons}$, $\Gamma_{ee} \times \mathcal{B}_{ee}$, $\Gamma_{\mu\mu} \times \mathcal{B}_{ee}$ для J/ψ - и $\psi(2S)$ -мезонов, параметры $\psi(3770)$ - мезона.

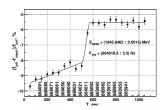
- ✓ Наиболее точное измерение массы τ -лептона (2007 г.)
- ✓ Измерение масс D-мезонов. С лучшей в мире точностью определена масса D^+ -мезона. УФН 184, 75-88 (2014)
- ✓ Определение величины R в диапазоне энергий 1.84-3.72 ГэВ. Наиболее высокая точность измерений по систематической неопределённости в настоящее время. УФН 190, 995-1005(2020)
- 🗸 Измерение ряда бранчингов в распадах J/ψ .

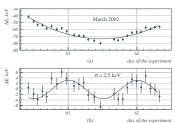


Спасибо за внимание!

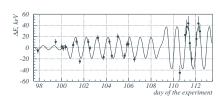
BACKUP

Вклад R в a_{μ} и $\alpha(M_Z^2)$

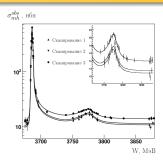

$$a_{\mu}^{exp} = (g_{\mu} - 2)/2$$

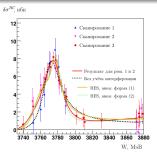

A. Blondel и др. arXiv:1905.05078.

$$\Delta \alpha^{(5)}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} \operatorname{Re} \int_{4\pi^2}^{\infty} \frac{R(s)ds}{s(s-M^2-i\epsilon)}$$


Измерение энергии в эксперименте КЕДР

Изменение скоростей счёта для поляризованного и неполяризованного пучков.

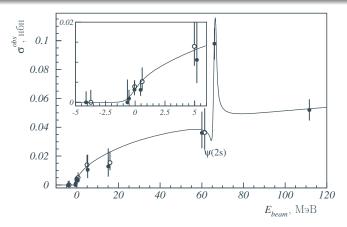

Верхний рисунок — энергия в зависимости от времени, нижний тоже самое после вычитания «медленной» временной компоненты.



Интерполяция энергии после удаления всех апериодических зависимостей.

- Точность интерполяции энергии составляет 10-30 кэВ.
- В течение эксперимента проведено более 3000 калибровок энергии.

Измерение параметров $\psi(3770)$



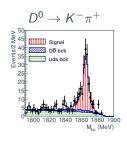
Сканирования 2004 и 2006 гг. $\int \mathcal{L} dt \sim 1.9 \ \text{пкбн}^{-1}.$ Наблюдаемое адронное сечение как функция энергии в системе центра масс для трёх сканирований. Кривые соответствуют подгонке по векторной доминантности.

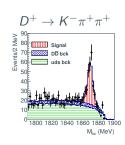
Избыток в адронном сечении в области $\psi(3770)$ - резонанса, ассоциированный с рождением $D\overline{D}$ - пар. Кривые соответствуют подгонкам. Данные эксперимента приведены с учётом эффективности регистрации событий.

$$M = 3779.2^{+1.8}_{-1.7}^{+0.5}_{-0.7}^{+0.3}_{-0.3} \text{ M} \ni \text{B}$$

 $\Gamma = 24.9^{+4.6}_{-4.0}^{+0.5}_{-0.0}^{+0.2}_{-0.0} \text{ M} \ni \text{B}$

Измерение массы au-лептона

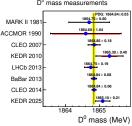

Наблюдаемое сечение процесса $e^+e^- o au^+ au^-$ в зависимости от энергии.

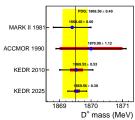

Наиболее точное измерение массы au-лептона

КЕДР 2007 г. :
$$M_{ au}^{\mathsf{KEДP}\ 2007} = 1776.81_{-0.23}^{+0.25} \pm 0.15\ \mathsf{M}$$
эВ

BESIII 2014 г. : M_{τ}^{BESIII} 2014 = 1776.91 \pm 0.12 $_{-0.13}^{+0.10}$ МэВ

Измерение масс *D*-мезонов




Анализ данных 2004 г. и 2016-2017 гг. $(\int Ldt \simeq 4.9 \text{ nG}^{-1})$

- Набор статистики в области $\psi(3770)$ -резонанса, который в распадается на $D\overline{D}$ -пару.
- Кинематическая реконструкция процессов $D^0 \to K^- \pi^+ . D^+ \to K^- \pi^+ \pi^+$

D⁰ mass measurements

D⁺ mass measurements

Результаты эксперимента КЕДР в сравнении с

данными других экспериментов

Форма сечения узкого резонанса

В случае рождения узких векторных мезонов в реакции ${\rm e}^+{\rm e}^- \to V \to {\it адроны} :$

$$\sigma_{\psi(2S)}(W) = \frac{12\pi}{W^2} \bigg(1 + \delta \bigg) \Bigg[\frac{\Gamma_{\mathsf{ee}} \Gamma_h}{\Gamma M} \operatorname{Im} f(W) - \frac{2\alpha \sqrt{R \, \Gamma_{\mathsf{ee}} \Gamma_h}}{3W} \, \lambda \, \operatorname{Re} \frac{f^*(W)}{1 - \Pi_0} \, \Bigg] + \ldots,$$

где Г, Г $_{ee}$ и Г $_h$ – полная и парциальная ширины мезона, M - его масса. Здесь α - постоянная тонкой структуры, $R=\sigma^{(h)}/\sigma^{(\mu\mu)}$, $\delta=\frac{3}{4}\beta+\frac{\alpha}{\pi}\left(\frac{\pi^2}{3}-\frac{1}{2}\right)+\beta^2\left(\frac{37}{96}-\frac{\pi^2}{12}-\frac{\ln(W^2/m_e^2)}{72}\right)$, λ – доля событий, интерферирующих с нерезонансным адронным сечением и

$$\beta = \frac{4\alpha}{\pi} \left(\ln \frac{W}{m_{\rm e}} - \frac{1}{2} \right), \quad f = \frac{\pi\beta}{\sin\pi\beta} \left(\frac{M^2}{s} - 1 - i \frac{\Gamma M}{s} \right)^{\beta - 1}$$

Приведенная формула восходит к работе Я.И. Азимов и др. Письма в ЖЭТФ **21**, вып. 6, 1975

Кроме массы при подгонке определяется комбинация $\frac{\Gamma_{ee}\Gamma_h}{\Gamma}=\Gamma_{ee}\times\mathcal{B}_{hadrons}$