# Baryon form factors at **₩5I**

Kai Zhu (IHEP, Beijing)
On behalf of BESIII collaboration
International Workshop on  $e^+e^-$  collisions from Phi to Psi
25 Feb. 2019 – 1 Mar. 2019, Budker INP, Novosibirsk

### Outline

- Introduction (form factors and BESIII data)
- Time-like form factors of proton
  - ISR un-tag method with data at higher energies
  - -Scan data
- Time-like form factors of Λ
- Time-like form factors of  $\Lambda_c$
- Summary and outlook

### Form factors of proton

Understanding the inner structure of proton



- Form factors represent the charge distribution in momentum space and are related to the cross sections directly
  - Probe the size of the nucleus
  - Test QCD scaling

# Form factors for proton

- Space-like
  - Many measurements via scattering
  - At JLab, the ratio was measured precisely with an uncertainty of ~1%, based on which the proton electronic and magnetic radii could be extracted
- Time-like
  - Measurements via  $p\bar{p}$  collision or  $e^+e^- \rightarrow p\bar{p}$

$$-\sigma(e^+e^- \to p\bar{p}) \frac{d\sigma_{p\bar{p}}(s)}{d\Omega} = \frac{\alpha^2\beta C}{4s}[|G_{\mathsf{M}}|^2(1+\cos^2\theta_p) + \frac{4m_p^2}{s}|G_{\mathsf{E}}|^2\sin^2\theta_p]$$

- Lacking accurate data on the angular distributions. Most experiments assume  $|G_E| = |G_M| = |G_{eff}|$
- Only two experiments measure  $|G_E/G_M|$ , with inconsistent results (Babar & PS170)

# BESIII data: the largest $e^+e^-$ collision samples in $\tau$ -charm region



2018/11/22

### Proton form factors at BESIII

#### Both scan and ISR can be used at BESIII

- High-energy data sets (3.773 ~ 4.6 GeV)
  - Untagged ISR technique
  - Tagged ISR technique
- Low-energy scan data sets (2.0 ~ 3.08 Gev)
  - -Phys. Rev. D. 91, 112004 (2015), the first set
  - Full set; expected to supersede the previous results

### Proton form factors at BESIII

#### Both scan and ISR can be used at BESIII

- High-energy data sets (3.773 ~ 4.6 GeV)
  - Untagged ISR technique
  - Tagged ISR technique
- Low-energy scan data sets (2.0 ~ 3.08 Gev)



- -Phys. Rev. D. 91, 112004 (2015), the first set
- Full set; expected to supersede the previous results

# Untagged ISR technique

# Proton form factors results at BESIII with untag ISR method arXiv:1902.00665 [hep-ex]



| E <sub>cm</sub> [GeV] | L [pb <sup>-1</sup> ] |
|-----------------------|-----------------------|
| 3.773                 | 2931.8                |
| 4.008                 | 481.96                |
| 4.226                 | 1053.9                |
| 4.258                 | 825.67                |
| 4.358                 | 539.84                |
| 4.416                 | 1041.3                |
| 4.600                 | 585.4                 |

Total:  $7.4 \text{ f}b^{-1}$ 

- **ISR analysis**: continuous q<sup>2</sup> range
- Untagged ISR analysis: high statistic

# Total cross section and effective FFs arXiv:1902.00665 [hep-ex] in 30 intervals of the $M_{p\bar{p}}$ between 2.0 and 3.8 GeV

The ISR and the Born cross sections are related by the radiator function W(s,x):

$$\frac{d\sigma_{p\bar{p}\gamma_{ISR}}(q^2)}{dq^2} = \frac{1}{s}W(s,x)\sigma_{p\bar{p}}(q^2),$$

$$x = 1 - \frac{q^2}{s}, q^2 = M_{p\bar{p}}^2$$



### **Oscillations**

### 0.04 0.02 -0.02 -0.04 -0.06 0 0.5 1 1.5 2 2.5 3 3.5 p (GeV/c)



#### arXiv:1902.00665 [hep-ex]

The oscillations can be extracted as

$$F_{p} = |G_{eff}| - F^{0}$$

$$(F^{0} : regular behavious)$$

(F<sup>0</sup> : regular behavior over the long range)

Confirmed observation by Barbar Phys. Rev. Lett. 114, 232301 (2015) Phys. Rev. C 93, 035201 (2016)

# Re-scattering effect? Resonance contribution?

# R= |GE|/|GM| in 3 intervals of $M_{p\bar{p}}$ between 2.0 and 3.0 GeV

 $\frac{d\sigma}{d\cos\theta_p} = A(H_M + \frac{R^2}{\tau}H_E)$   $H_M(\cos\theta_p, M_{p\bar{p}}) \text{ from MC } (G_{E=0})$   $H_E(\cos\theta_p, M_{p\bar{p}}) \text{ from MC } (G_M = 0)$ 

Data of 7 samples are combined After bkg. subtraction (red) After efficiency correction (black) Fit (blue)



arXiv:1902.00665 [hep-ex]

| $M_{p\bar{p}} \; [{\rm GeV}/c^2]$ | Fitting range $(\cos \theta_p)$ | R               |
|-----------------------------------|---------------------------------|-----------------|
| 2.0 - 2.3                         | [-0.6,0.6]                      | $1.24 \pm 0.29$ |
| 2.3 - 2.6                         | [-0.8, 0.8]                     | $0.98 \pm 0.24$ |
| 2.6 - 3.0                         | [-0.8, 0.8]                     | $1.18 \pm 0.40$ |



(Full) low-energy scan data sets  $688.5 \ pb^{-1}$ , 22 energies, 2.0 to 3.08 GeV

# Cross section of $e^+e^- \rightarrow p\bar{p}$ and effective FF

- Strategy:
  - In TL region:

$$\frac{d\sigma_{p\bar{p}}(s)}{d\Omega} = \frac{\alpha^2\beta C}{4s}[|G_{M}|^2(1+\cos^2\theta_p) + \frac{4m_p^2}{s}|G_{E}|^2\sin^2\theta_p]$$

• Assume  $|G| = |G_E| = |G_M|$ , the effective FF is

$$|G| = \sqrt{rac{\sigma_{par{p}}}{rac{4\pilpha^2eta C}{3s}(1+rac{2m_p^2}{s})}}$$

• In time-like region, BESIII result is an unprecedented accuracy.





# Measurement of $|G_E/G_M|$ and magnetic FF

#### Strategy:

• Fit on the polar angular distribution of proton:

$$\frac{dN}{\epsilon(1+\delta) \times d\cos\theta_p} = \frac{\mathcal{L}\hbar c\pi\alpha^2\beta C}{2s} |G_M|^2 [(1+\cos^2\theta_p) + \frac{4m_p^2}{s} |\frac{G_E}{G_M}|^2 (1-\cos^2\theta_p)]$$

Uncertainties include statistical and systematical.



2019-2-28



- $|G_E/G_M|$  providing an uncertainty comparable to the space-like region for the first time.
- BESIII measurement of  $|G_E/G_M|$  strongly favors BaBar's compared to that of PS170.

# $\Lambda$ form factors



# Hyperon structure

- Electromagnetic From Factors (EMFFs)
  - fundamental hadron structure observables
  - describe the deviation from the point-like case
  - related to the charge- and magnetization density
- EMFFs of nucleon can be studied in:
  - $\triangleright$  elastic scattering,  $e^-N \rightarrow e^-N$ , space-like
  - > annihilation,  $e^+e^- \to N\bar{N}$ ,  $N\bar{N} \to e^+e^-$ , time-like
- Hyperons are difficult to study in the space-like region
  - > they are unstable hyperon targets are unfeasible
  - > the quality of hyperon beams is in general not sufficient
- $e^+e^-$  annihilation offers the best opportunity to study hyperon structure

### **Previous BESIII measurements**

PHYSICAL REVIEW D 97, 032013 (2018)

# Observation of a cross-section enhancement near mass threshold in $e^+e^- \to \Lambda\bar{\Lambda}$

 $\sqrt{s} = 2.2324$ , 2.400, 2.800 and 3.080 GeV



### Results of the cross section and effective EMFFs

- The cross section  $\sigma = \frac{N_{signal}}{L\epsilon(1+\delta)Br(\Lambda \to p\pi^-)Br(\bar{\Lambda} \to \bar{p}\pi^+)}$ 
  - ightharpoonup ISR and vacuum polarization factor  $1+\delta$  is from ConExc
  - $\succ$   $\epsilon$  is the detection efficiency, L is the luminosity
  - $\sigma = 119.0 \pm 5.3 (stat.) \pm 7.3 (sys.) \text{ pb}^{1}$   $\sqrt{s} = 2.396 \text{ GeV}$
- $\Box \text{ Effective form factors are related to } \sigma, \ |G(q^2)| = \sqrt{\frac{\sigma(q^2)}{(1+\frac{1}{2\tau})(\frac{4\pi\alpha^2\beta}{3q^2})}}$

$$> |G| = 0.123 \pm 0.003(stat.) \pm 0.004(sys.)$$

 $\alpha \approx \frac{1}{137}$  is the fine structure constant,

$$eta = \sqrt{1 - rac{1}{ au}}$$
 is the velocity,  $au = rac{q^2}{4m_{\Lambda}^2}$ .

#### Previous measurements

|                                     | $\sigma(pb)$ | G                       | Reference                      |
|-------------------------------------|--------------|-------------------------|--------------------------------|
| BESIII $\sqrt{s} = 2.40 \text{GeV}$ | 128±19±18    | $0.127\pm0.009\pm0.009$ | Phys. Rev. D 97, 032013 (2018) |
| BaBar $\sqrt{s}$ =2.35-2.40 GeV     | 176±34       | $0.152\pm0.016$         | Phys. Rev. D 76, 092006 (2007) |

20

<sup>1</sup>The systematic uncertainty is dominated by a conservative estimate of the contribution of  $|\vec{p}|(\Lambda)$  zhuk@phipsi2019

# Joint decay distribution

#### ■ Space-like region:

$$ightharpoonup e^-B 
ightharpoonup e^-B 
ightharpoonup e^-B$$
 scattering

$$> q^2 = (p_{ie} - p_{fe})^2 < 0$$

 $\succ$   $G_E$  and  $G_M$  real numbers

#### ☐ Time-like region:

$$ightharpoonup e^+e^- \leftrightarrow B\bar{B}, \; q^2 \geq 4M_B^2 > 0$$

$$F_E(q^2) = |G_E(q^2)|e^{i\Phi_E}, G_M(q^2) = |G_M(q^2)|e^{i\Phi_M}$$

$$ightharpoonup$$
 Relative phase:  $\Delta \Phi = \Phi_E - \Phi_M$ 



$$\mathcal{T}_0(\boldsymbol{\xi}) = 1$$

$$\mathcal{T}_{(\theta_1, \varphi_1)}^{\hat{z}} \quad \mathcal{T}_{1}(\xi) = \sin^2 \theta \sin \theta_1 \sin \theta_2 \cos \phi_1 \cos \phi_2 + \cos^2 \theta \cos \theta_1 \cos \theta_2,$$

$$\mathcal{T}_2(\xi) = \sin \theta \cos \theta \left( \sin \theta_1 \cos \theta_2 \cos \phi_1 + \cos \theta_1 \sin \theta_2 \cos \phi_2 \right),$$

 $-\alpha_{\Lambda}^{2} \left( \mathcal{T}_{1} + \sqrt{1 - \eta^{2}} \cos(\Delta \Phi) \mathcal{T}_{2} + \eta \mathcal{T}_{6} \right)$ 

 $+\alpha_{\Lambda}\sqrt{1-\eta^2}\sin(\Delta\Phi)\left(\mathcal{T}_3-\mathcal{T}_4\right)$ .

$$\mathcal{T}_3(\xi) = \sin \theta \cos \theta \sin \theta_1 \sin \phi_1$$

 $\mathcal{W}(\boldsymbol{\xi}) = \mathcal{T}_0 + \eta \mathcal{T}_5$ 

$$\mathcal{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$$

$$\mathcal{T}_5(\boldsymbol{\xi}) = \cos^2 \theta,$$

$$\mathcal{T}_6(\xi) = \cos \theta_1 \cos \theta_2 - \sin^2 \theta \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2.$$

# $|G_E/G_M|$ and relative phase

Fit by maximal likelihood

 $\alpha_{\Lambda}$  is determined to be 0.75 $\pm$ 0.01 by preliminary BESIII result



$$R = 0.94 \pm 0.16(stat.) \pm 0.03(sys.) \pm 0.02(\alpha_{\Lambda})$$

$$\Delta \Phi = 42^{\circ} \pm 16^{\circ} (stat.) \pm 8^{\circ} (sys.) \pm 6^{\circ} (\alpha_{\Lambda})$$

The statistical significance of  $\Delta \Phi$  is  $4.3\sigma$ . First measurement of  $\Delta \phi$ 

# $\Lambda_c$ form factors near threshold



# $e^+e^- \to \Lambda_c^+ \overline{\Lambda}_c^-$ near threshold Phys. Rev. Lett. 120, 132001 (2018)



√s=**4574.5**, 4580.0, 4590.0 and **4599.5** MeV

$$|G_E/G_M|$$
:  
1. 14  $\pm$  0. 14  $\pm$  0. 07  
1. 23  $\pm$  0. 05  $\pm$  0. 03

- At thr there is indeed a step in  $\sigma(e^+e^- -> \Lambda_c \Lambda_{cbar})$ ,
- Followed by a kind of a plateau
- At thr  $\sigma(e^+e^- -> \Lambda_c \Lambda_{cbar})$  is close to the pointlike value, once the Coulomb enhancement factor is taken into account:

$$\sigma(e^+e^- \rightarrow \Lambda_c \Lambda_{cbar})_{pointl} \approx \pi^2 \alpha^3/(2M_B^2) \approx 145 \text{ pb}$$
 Rinaldo Baldini Ferroli, Hefei, 2018

# $e^+e^- \to \Lambda_c^+ \overline{\Lambda}_c^-$ near threshold Phys. Rev. Lett. 120, 132001 (2018)



25

# Summary and outlook (I)

- Proton form factors have been measured at BESIII with ISR and scan technique
  - Result in significantly improved precision
  - Some novel/unexpected features observed/confirmed
- $\Lambda$  form factors with relative phase between  $G_E$  and  $G_M$  first time
- $\Lambda_c$  effective form factors and  $|G_E/G_M|$  near threshold

# Summary and outlook (II)







#### Will come

- Proton form factors with varied technique (Ecm<2GeV)</li>
- Form factors of other baryons, such as neutron (will be released soon),  $\Omega$ ,  $\Sigma$ ,  $\Xi$ , as well as polarizations
- $-\Lambda_c$  form factors at higher energy

# Thanks for your attention!

# Backup

# Background estimation based on Sideband method



# Scan data (selection I)

#### Particle identification

- At (2.0~2.15) GeV, use normalized pulse height,
- At  $(2.175\sim3.08)$  GeV, use dE/dx and TOF.



\*The red line is  $p\bar{p}$  signal events selected from the  $q\bar{q}$  samples.

# Scan data (selection II)

- Require angle between p and  $\bar{p}$  in center-of-mass criteria.
- Require TOF information.



■ Momentum window for p and  $\bar{p}$ :



# Electromagnetic Form Factors











Vector current, **two form factors** ( $F_{ij}$  and  $F_{ij}$ )

$$\Gamma_{\mu} = e\bar{u}(p')[F_1(q^2)\gamma_{\mu} + \frac{\kappa}{2M_N}F_2(q^2)i\sigma_{\mu\nu}q^{\nu}]u(p)e^{iqx}$$

#### Dirac

#### Pauli

$$F_1^p(q^2 = 0) = 1$$
  $F_2^p(q^2) = 1$   
 $F_1^n(q^2 = 0) = 0$   $F_2^n(q^2) = 1$ 

#### Sachs

$$G_E = F_1 + \frac{\kappa q^2}{4M^2} F_2 \qquad G_M = F_1 + \kappa F_2$$

$$G_E(4M_p^2) = G_M(4M_p^2)$$
  
G.S. Huang: Baryon FF @ BESIII





# Baryon-pair production near threshold

The Born cross section for  $e^+e^- \to \gamma^* \to B\bar{B}$ , can be expressed in terms of electromagnetic form factor  $G_E$  and  $G_{M}$ :

$$\sigma_{B\bar{B}}(m) = \frac{4\pi\alpha^2 c\beta}{3m^2} [|G_M(m)|^2 + \frac{1}{2\tau} |G_E(m)|^2]$$

 $\alpha=\frac{1}{137}$  is fine structure constant,  $\beta=\sqrt{1-4m_B^2/m^2}$  is the velocity,  $\tau=m^2/4m_B^2$ 

The Coulomb factor C= 
$$\begin{cases} \frac{\pi\alpha}{\beta} \frac{1}{1-\exp(-\frac{\pi\alpha}{\beta})} & \text{for a charged } B\bar{B} \text{ pair} \\ 1 & \text{for a neutral } B\bar{B} \text{ pair} \end{cases}$$

For the neutral pair production, the cross section should be 0 at threshold, and is expected to increase with the velocity near the threshold.

G.S. Huang: Baryon FF @BESIII

34