Light mesons from tau decays

Sergi Gonzàlez-Solís¹

Indiana University

Center for Exploration of Energy and Matter

based on: Escribano, Gonzàlez-Solís, Jamin, Roig JHEP 1409 (2014), Escribano, Gonzàlez-Solís, Roig PRD 94 (2016), 034008, Gonzàlez-Solís, Roig 1902.02273 [hep-ph]

International Workshop on e^+e^- collisions from Phi to Psi

Budker INP, Novosibirsk, march 1, 2019

INDIANA UNIVERSITY

¹sgonzal@iu.edu

Test of QCD and ElectroWeak Interactions

- Inclusive decays: τ⁻ → (ūd, ūs)ν_τ
 Full hadron spectra (precision physics)
 - Fundamental SM parameters: $\alpha_s(m_{\tau}), m_s, |V_{us}|$
- Exclusive decays: $\tau^- \rightarrow (PP, PPP, ...)\nu_{\tau}$

specific hadron spectrum (approximate physics)

Hadronization of QCD currents, study of Form Factors, resonance parameters (M_R , Γ_R)

S.Gonzàlez-Solís

Phi to Psi 2019

- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$: Pion vector form factor, $\rho(770), \rho(1450), \rho(1700)$ • $\tau^- \rightarrow K^- K_S \nu_{\tau}$: Kaon vector form factor, $\rho(770), \rho(1450), \rho(1700)$ • $\tau^- \rightarrow K_S \pi^- \nu_{\tau}$: $K\pi$ form factor, $K^*(892), K^*(1410), K_{\ell 3}, V_{us}$ (Passemar) • $\tau^- \rightarrow K^- \eta^{(I)} \nu_{\tau}$: $K^*(1410), V_{us}$
- $\tau^- \rightarrow \pi^- \eta^{(\prime)} \nu_{\tau}$: isospin-violating decays

The pion vector form factor: Motivation

• Enters the description of many physical processes

see talk by Colangelo

• Belle measurement of the pion vector form factor (0805.3773)

- high-statistics data until de au mass
- sensitive to $\rho(1450)$ and $\rho(1700)$
- our aim: to improve the description of the $\rho(1450)$ and $\rho(1700)$ region

Dispersive representation of the pion vector form factor

$$F_V^{\pi}(s) = \exp\left[\alpha_1 s + \frac{\alpha_2}{2}s^2 + \frac{s^3}{\pi}\int_{4m_{\pi}^2}^{s_{\rm cut}} ds' \frac{\delta_1^1(s')}{(s')^3(s'-s-i0)}\right],$$

• Form Factor phase $\delta_1^1(s)$

• $4m_{\pi}^2 < s < 1$ GeV: $\pi\pi$ phase from Roy (García-Martín et.al PRD 83, 074004 (2011)) $\frac{1}{2}$

•
$$1 < s < m_{\tau}^2$$
: "Pheno" phase shift

•
$$m_{ au}^2 < s$$
: phase guided smoothly to π

Low-energy observables

$$F_V^{\pi}(s) = 1 + \frac{1}{6} \langle r^2 \rangle_V^{\pi} s + c_V^{\pi} s^2 + d_V^{\pi} s^3 + \cdots$$

$$\langle r^2 \rangle_V^{\pi} = 6\alpha_1, \quad c_V^{\pi} = \frac{1}{2} \left(\alpha_2 + \alpha_1^2 \right).$$

ChPT with resonances + Omnès: Exponential representation

• Get a model for the (Pheno) phase

$$F_V^{\pi}(s) = P_n(s) \exp\left\{\frac{s^n}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{(s')^n} \frac{\delta_1^1(s')}{s'-s-i0}\right\},\,$$

• $\pi\pi \to \pi\pi$ scattering at $\mathcal{O}(p^2)$

$$T(s) = \frac{s - m_{\pi}^2}{F_{\pi}^2} \longrightarrow T_1^1(s) = \frac{s\sigma_{\pi}^2(s)}{96\pi F_{\pi}^2} \longrightarrow \delta_1^1(s) = \sigma_{\pi}(s)T_1^1(s) = \frac{s\sigma_{\pi}^3(s)}{96\pi F_{\pi}^2},$$

Exponential Omnès representation of the form factor

$$F_V^{\pi}(s) = \frac{M_{\rho}^2}{M_{\rho}^2 - s - iM_{\rho}\Gamma_{\rho}(s)} \exp\left\{-\frac{s}{96\pi^2 F_{\pi}^2} \operatorname{Re}\left[A_{\pi}(s,\mu^2) + \frac{1}{2}A_K(s,\mu^2)\right]\right\}$$

$$\Gamma_{\rho}(s) = -\frac{M_{\rho}s}{96\pi^2 F_{\pi}^2} \operatorname{Im}\left[A_{\pi}(s) + \frac{1}{2}A_K(s)\right]$$

• Incorporation of the $\rho' \equiv \rho(1450), \rho'' \equiv \rho(1700)$

$$F_{V}^{\pi}(s) = \frac{M_{\rho}^{2} + s\left(\gamma e^{i\phi_{1}} + \delta e^{i\phi_{2}}\right)}{M_{\rho}^{2} - s - iM_{\rho}\Gamma_{\rho}(s)} \exp\left\{\operatorname{Re}\left[-\frac{s}{96\pi^{2}F_{\pi}^{2}}\left(A_{\pi}(s) + \frac{1}{2}A_{K}(s)\right)\right] - \frac{se^{i\phi_{1}}}{M_{\rho'}^{2} - s - iM_{\rho'}\Gamma_{\rho'}(s)} \exp\left\{-\frac{s\Gamma_{\rho'}(M_{\rho'}^{2})}{\pi M_{\rho''}^{3}\sigma_{\pi}^{3}(M_{\rho''}^{2})}\operatorname{Re}A_{\pi}(s)\right\} - \frac{\delta\frac{se^{i\phi_{2}}}{M_{\rho''}^{2} - s - iM_{\rho''}\Gamma_{\rho''}(s)} \exp\left\{-\frac{s\Gamma_{\rho''}(M_{\rho''}^{2})}{\pi M_{\rho''}^{3}\sigma_{\pi}^{3}(M_{\rho''}^{2})}\operatorname{Re}A_{\pi}(s)\right\},$$

$$\Gamma_{\rho',\rho''}(s) = \Gamma_{\rho',\rho''} \frac{s}{M_{\rho',\rho''}^2} \frac{\sigma_{\pi}^3(s)}{\sigma_{\pi}^3(M_{\rho',\rho''}^2)} \theta(s - 4m_{\pi}^2).$$

$$\tan \delta_1^1(s) = \frac{\mathrm{Im} F_V^{\pi}(s)}{\mathrm{Re} F_V^{\pi}(s)}$$

Dispersive Fits to the Pion Vector Form Factor

• Fits for different values of $s_{\rm cut}$ and matching at 1 GeV

	Paramotor		$s_{ m cut}$ [GeV ²]			
Fits		m_{τ}^2	L_{τ}^2 4 (reference fit)		∞	
Fit 1	α_1 [GeV ⁻²]	1.87(1)	1.88(1)	1.89(1)	1.89(1)	
	$lpha_2$ [GeV $^{-4}$]	4.40(1)	4.34(1)	4.32(1)	4.32(1)	
	$m_{ ho}$ [MeV]	= 773.6(9)	= 773.6(9)	= 773.6(9)	= 773.6(9)	
	$M_{ ho}$ [MeV]	$= m_{\rho}$	$= m_{\rho}$	$= m_{\rho}$	$= m_{ ho}$	
	$M_{ ho'}$ [MeV]	1365(15)	1376(6)	1313(15)	1311(5)	
	$\Gamma_{\rho'}$ [MeV]	562(55)	603(22)	700(6)	701(28)	
	$M_{\rho^{\prime\prime}}$ [MeV]	1727(12)	1718(4)	1660(9)	1658(1)	
	$\Gamma_{\rho^{\prime\prime}}$ [MeV]	278(1)	465(9)	601(39)	602(3)	
	γ	0.12(2)	0.15(1)	0.16(1)	0.16(1)	
	ϕ_1	-0.69(1)	-0.66(1)	-1.36(10)	-1.39(1)	
	δ	-0.09(1)	-0.13(1)	-0.16(1)	-0.17(1)	
	ϕ_2	-0.17(5)	-0.44(3)	-1.01(5)	-1.03(2)	
	χ^2 /d.o.f	1.47	0.70	0.64	0.64	

• Form Factor phase shift for different values of $s_{\rm cut}$

1902.02273 [hep-ph]

Modulus squared of the pion vector form factor

 The results can be found in tables provided as ancillary material in 1902.02273 [hep-ph]

Variant (I)

• Fits for different matching point and with $s_{\rm cut}$ = 4 GeV

	Paramotor	Matching point [GeV]				
Fits	i alametei	0.85	0.9	0.95	1 (reference fit)	
Fit I	α_1 [GeV ⁻²]	1.88(1)	1.88(1)	1.88(1)	1.88(1)	
	$lpha_2$ [GeV $^{-4}$]	4.35(1)	4.35(1)	4.34(1)	4.34(1)	
	$m_{ ho}$ [MeV]	= 773.6(9)	= 773.6(9)	= 773.6(9)	= 773.6(9)	
	$M_{ ho}$ [MeV]	$= m_{ ho}$	$= m_{\rho}$	$= m_{ ho}$	$= m_{ ho}$	
	$M_{ ho'}$ [MeV]	1394(6)	1374(8)	1351(5)	1376(6)	
	$\Gamma_{\rho'}$ [MeV]	592(19)	583(27)	592(2)	603(22)	
	$\dot{M}_{\rho^{\prime\prime}}$ [MeV]	1733(9)	1715(1)	1697(3)	1718(4)	
	$\Gamma_{\rho''}$ [MeV]	562(3)	541(45)	486(7)	465(9)	
	γ	0.12(1)	0.12(1)	0.13(1)	0.15(1)	
	ϕ_1	-0.44(3)	-0.60(1)	-0.80(1)	-0.66(1)	
	δ	-0.13(1)	-0.13(1)	-0.13(1)	-0.13(1)	
	ϕ_2	-0.38(3)	-0.51(2)	-0.62(1)	-0.44(3)	
	χ^2 /d.o.f	0.75	0.74	0.68	0.70	

Variant (II): Inclusion of intermediate states other than $\pi\pi$

• Fit A:
$$\rho' \to K\bar{K}$$
 and $\rho'' \to K\bar{K}$

• Fit B:
$$\rho' \to K\bar{K} + \rho' \to \omega\pi$$

Paramotor	$s_{ m cut}$ = 4 ${ m GeV}^2$				
i alametei	Fit A	Fit B	reference fit		
α_1 [GeV ⁻²]	1.87(1)	1.88(1)	1.88(1)		
$lpha_2$ [GeV $^{-4}$]	4.37(1)	4.35(1)	4.34(1)		
$m_{ ho}$ [MeV]	= 773.6(9)	= 773.6(9)	= 773.6(9)		
$M_{ ho}$ [MeV]	$= m_{ ho}$	$= m_{ ho}$	$= m_{ ho}$		
$M_{ ho'}$ [MeV]	1373(5)	1441(3)	1376(6)		
$\Gamma_{\rho'}$ [MeV]	462(14)	576(33)	603(22)		
$M_{\rho^{\prime\prime}}$ [MeV]	1775(1)	1733(9)	1718(4)		
$\Gamma_{\rho''}$ [MeV]	412(27)	349(52)	465(9)		
γ	0.13(1)	0.15(3)	0.15(1)		
ϕ_1	-0.80(1)	-0.53(5)	-0.66(1)		
δ	-0.14(1)	-0.14(1)	-0.13(1)		
ϕ_2	-0.44(2)	-0.46(3)	-0.44(3)		
χ^2 /d.o.f	0.93	0.70	0.70		

Variant (III)

Dispersive representation of the pion vector form factor

$$F_V^{\pi}(s) = \exp\left[\frac{s}{\pi} \int_{4m_{\pi}^2}^{s_{\rm cut}} ds' \frac{\delta_1^1(s')}{(s')(s'-s-i0)} + \frac{s}{\pi} \int_{s_{\rm cut}}^{\infty} ds' \frac{\delta_{\rm eff}(s')}{(s')(s'-s-i0)}\right] \Sigma(s)$$

- roperties for $\delta_{\rm eff}(s)$
 - $\delta_{\text{eff}}(s_{\text{cut}}) = \delta_1^1(s_{\text{cut}})$ and $\delta_{\text{eff}}(s) \to \pi$ for large s to recover 1/s fall-off

$$\delta_{\rm eff}(s) = \pi + \left(\delta_1^1(s_{\rm cut}) - \pi\right) \frac{s_{\rm cut}}{s}$$

• Integrating the piece with $\delta_{\text{eff}}(s)$

$$F_{V}^{\pi}(s) = e^{1 - \frac{\delta_{1}^{1}(s_{\text{cut}})}{\pi}} \left(1 - \frac{s}{s_{\text{cut}}}\right)^{\left(1 - \frac{\delta_{1}^{1}(s_{\text{cut}})}{\pi}\right) \frac{s_{\text{cut}}}{s}} \left(1 - \frac{s}{s_{\text{cut}}}\right)^{-1} \times \exp\left[\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{s_{\text{cut}}} ds' \frac{\delta_{1}^{1}(s')}{(s')(s' - s - i0)}\right] \Sigma(s)$$

$$\Sigma(s) = \sum_{i=0}^{\infty} a_{i} \omega^{i}(s), \quad \omega(s) = \frac{\sqrt{s_{\text{cut}}} - \sqrt{s_{\text{cut}} - s}}{\sqrt{s_{\text{cut}}} + \sqrt{s_{\text{cut}} - s}}$$

S.Gonzàlez-Solís

march 1, 2019 13/33 The resulting fit parameters are found to be

$$\begin{split} a_1 &= 2.99(12) \,, \\ M_{\rho'} &= 1261(7) \,\,\mathrm{MeV} \,, \quad \Gamma_{\rho'} &= 855(15) \,\,\mathrm{MeV} \,, \\ M_{\rho''} &= 1600(1) \,\,\mathrm{MeV} \,, \quad \Gamma_{\rho''} &= 486(26) \,\,\mathrm{MeV} \,, \\ \gamma &= 0.25(2) \,, \quad \phi_1 &= -1.90(6) \,, \\ \delta &= -0.15(1) \,, \quad \phi_2 &= -1.60(4) \,, \\ \mathrm{a} \,\, \chi^2/\mathrm{d.o.f} &= 32.3/53 \sim 0.61 \,\,\mathrm{for} \,\,\mathrm{the} \,\,\mathrm{one-parameter} \,\,\mathrm{fit} \,\,\mathrm{and} \end{split}$$

$$a_{1} = 3.03(20), \quad a_{2} = 1.04(2.10),$$

$$M_{\rho'} = 1303(19) \text{ MeV}, \quad \Gamma_{\rho'} = 839(102) \text{ MeV},$$

$$M_{\rho''} = 1624(1) \text{ MeV}, \quad \Gamma_{\rho''} = 570(99) \text{ MeV}$$

$$\gamma = 0.22(10), \quad \phi_{1} = -1.65(4),$$

$$\delta = -0.18(1), \quad \phi_{2} = -1.34(14),$$

with a χ^2 /d.o.f = $35.6/52 \sim 0.63$ for the two-parameter fit.

with

Form Factor phase shift for different parametrizations

1902.02273 [hep-ph]

Modulus squared of the pion vector form factor

 The results can be found in tables provided as ancillary material in 1902.02273 [hep-ph]

Central results

• Fit results (central value ± statistical fit error ± systematic th. error) $\alpha_1 = 1.88 \pm 0.01 \pm 0.01 \text{ GeV}^{-2}, \quad \alpha_2 = 4.34 \pm 0.01 \pm 0.03 \text{ GeV}^{-4},$ $M_{\rho} \doteq 773.6 \pm 0.9 \pm 0.3 \text{ MeV},$ $M_{a'} = 1376 \pm 6^{+18}_{-73} \text{ MeV}, \quad \Gamma_{a'} = 603 \pm 22^{+236}_{-141} \text{ MeV},$ $M_{\rho''} = 1718 \pm 4^{+57}_{-94} \text{ MeV}, \quad \Gamma_{\rho''} = 465 \pm 9^{+137}_{-53} \text{ MeV},$ $\gamma = 0.15 \pm 0.01^{+0.07}_{-0.03}, \quad \phi_1 = -0.66 \pm 0.01^{+0.22}_{-0.99},$ $\delta = -0.13 \pm 0.01^{+0.00}_{-0.05}, \quad \phi_2 = -0.44 \pm 0.03^{+0.06}_{-0.00},$ Physical pole mass and width $M_{o}^{\text{pole}} = 760.6 \pm 0.8 \text{ MeV}, \quad \Gamma_{o}^{\text{pole}} = 142.0 \pm 0.4 \text{ MeV},$ $M_{a'}^{\text{pole}} = 1289 \pm 8^{+52}_{-143} \text{ MeV}, \quad \Gamma_{a'}^{\text{pole}} = 540 \pm 16^{+151}_{-111} \text{ MeV},$ $M_{-\prime\prime}^{\text{pole}} = 1673 \pm 4_{-125}^{+68} \text{ MeV}, \quad \Gamma_{-\prime\prime}^{\text{pole}} = 445 \pm 8_{-49}^{+117} \text{ MeV},$ S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 17/33

Determination of the $\rho(1450)$ and $\rho(1700)$ resonance parameters

Reference	Model parameters	Pole parameters	Data
	$M_{ ho^\prime}, \Gamma_{ ho^\prime}$ [MeV]	$M_{ ho^{\prime}}^{ m pole},\Gamma_{ ho^{\prime}}^{ m pole}$ [MeV]	
ALEPH	$1328 \pm 15,468 \pm 41$	$1268 \pm 19,429 \pm 31$	au
ALEPH	$1409 \pm 12,501 \pm 37$	$1345 \pm 15,459 \pm 28$	$ au\&e^+e^-$
Belle (fixed $ F_V^{\pi}(0) ^2$)	$1446 \pm 7 \pm 28, 434 \pm 16 \pm 60$	$1398 \pm 8 \pm 31,408 \pm 13 \pm 50$	au
Belle (all free)	$1428 \pm 15 \pm 26, 413 \pm 12 \pm 57$	$1384 \pm 16 \pm 29,390 \pm 10 \pm 48$	au
Dumm et. al.	—	$1440 \pm 80,320 \pm 80$	au
Celis et. al.	$1497 \pm 7,785 \pm 51$	$1278 \pm 18,525 \pm 16$	au
Bartos et. al.	—	$1342 \pm 47, 492 \pm 138$	e^+e^-
Bartos et. al.	—	$1374 \pm 11,341 \pm 24$	au
This work	$1376 \pm 6^{+18}_{-73}, 603 \pm 22^{+236}_{-141}$	$1289 \pm 8^{+52}_{-143}, 540 \pm 16^{+151}_{-111}$	au
Reference	Model parameters	Pole parameters	Data
	$(M_{ ho^{\prime\prime}},\Gamma_{ ho^{\prime\prime}})$ [MeV]	$(M^{ m pole}_{ ho^{\prime\prime}},\Gamma^{ m pole}_{ ho^{\prime\prime}})$ [MeV]	
ALEPH	= 1713, = 235	1700,232	au
ALEPH	$1740 \pm 20, = 235$	$1728 \pm 20,232$	$ au\&e^+e^-$
Belle (fixed $ F_V^{\pi}(0) ^2$)	$1728 \pm 17 \pm 89, 164 \pm 21^{+89}_{-26}$	$1722 \pm 18,163 \pm 21^{+88}_{-27}$	au
Belle (all free)	$1694 \pm 41, 135 \pm 36^{+50}_{-26}$	$1690 \pm 94, 134 \pm 36^{+\overline{4}9}_{-28}$	au
Dumm et. al.		$1720 \pm 90, 180 \pm 90$	au
Celis et. al.	$1685 \pm 30,800 \pm 31$	$1494 \pm 37,600 \pm 17$	au
Bartos et. al.	_	$1719 \pm 65,490 \pm 17$	e^+e^-
Bartos et. al.	—	$1767 \pm 52, 415 \pm 120$	au
This work	$1718 \pm 4^{+57}_{-94}, 465 \pm 9^{+137}_{-53}$	$1673 \pm 4^{+68}_{-125}, 445 \pm 8^{+117}_{-49}$	au

Determination of resonance parameters

	$M_{\rho}^{\rm pole}$ = 760.6 \pm 0.8	$\mathrm{MeV}, \Gamma^{\mathrm{pole}}_{\rho}=142.0\pm0.4~\mathrm{MeV},$			
	$M_{ ho'}^{ m pole}$ = 1289 ± 8 ⁺⁵² ₋₁₄	$\Gamma_{3}^{\text{mode}} \mathrm{MeV} , \Gamma_{\rho'}^{\text{pole}} = 540 \pm 16^{+151}_{-111} \mathrm{MeV} ,$			
	$M_{ ho''}^{ m pole}$ = 1673 ± 4 ⁺⁶⁸ ₋₁₂	$\Gamma_5 {\rm MeV}, \Gamma^{\rm pole}_{\rho^{\prime\prime}} = 445 \pm 8^{+117}_{-49} {\rm MeV},$			
ρ (1450)	$I^{G}(J^{PC}) = 1^{+}(1^{-})$	ρ(1450) WIDTH			
See our mini-r	eview under the $\rho(1700)$.	VALUE (MeV) DOCUMENT ID			
ρ(1450) MASS		 400±60 OUR ESTIMATE This is only an educated guess; the educated guess; t			
ππ MODE EVTS DOCUMENT ID TECN COMMENT V=0.04 Wature (MeV) evts becarries evts evts		π π MODE EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \text{ ABRAMOWICZ12 ZEUS } e_{P} \rightarrow e^{+}\pi^{-}p \\ 2 \text{ LEES } 126 \text{ BABR } e^{+}e^{-}\pi^{+}\pi^{-}\gamma \\ 3.4 \text{ FUJIKAWA 08 } \text{ BELL } \pi^{-} \rightarrow \pi^{-}\pi^{0}\nu_{\tau} \\ 5 \text{ SCHAEL } 056 \text{ ALEP } \pi^{-} \rightarrow \pi^{-}\pi^{0}\nu_{\tau} \\ 7 \text{ ABELE } 906 \text{ CBAR } 0.0 \ pd \rightarrow \pi^{+}\pi^{-}\pi^{-}p \\ \text{ BERTIN 98 } 0\text{ BLX } 005-0465 \ np \rightarrow 2\pi^{+}\pi^{-} \\ 8 \text{ ABELE } 97 \text{ CBAR } \overline{p} n \rightarrow \pi^{-}\pi^{0}\pi^{0} \\ \text{ ACHASOV 97 } \text{ RVUE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BERTIN 97 } 0\text{ BLX } 005 \ pp \rightarrow 2\pi^{+}2\pi^{-} \\ \text{ BISELIO 89 } \text{ MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 89 } \text{ MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 89 } \text{ MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 89 } \text{ MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BISELIO 70 } \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \\ \text{ BIS MVE } e^{+}e^{-} \rightarrow \pi^$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
1292 ±17	*KURDADZE 83 ULYA 0.64–1.4 $e^+e^- \rightarrow \pi^+\pi^-$	218±40 * KUKDADZE 83 OLYA 0.64–1.4 $e^+e^- \to \pi^+\pi^-$			

To look for a nore of the propertor in the complex plane

-

ſ

Kaon vector Form Factor

$$\frac{d\Gamma(\tau^- \to K^- K^0 \nu_\tau)}{d\sqrt{s}} = \frac{G_F^2 |V_{ud}|^2}{768\pi^3} M_\tau^3 \left(1 - \frac{s}{M_\tau^2}\right)^2 \left(1 + \frac{2s}{M_\tau^2}\right) \sigma_K^3(s) |F_V^K(s)|^2 \,,$$

• Chiral Perturbation Theory $\mathcal{O}(p^4)$

$$F_{K^+K^-}(s) = 1 + \frac{2L_9^2}{F_\pi^2} - \frac{s}{192\pi^2 F_\pi^2} \left[A_\pi(s,\mu^2) + 2A_K(s,\mu^2) \right],$$

$$F_{K^0\bar{K}^0}(s) = -\frac{s}{192\pi^2 F_{\pi}^2} \left[A_{\pi}(s,\mu^2) - A_K(s,\mu^2) \right].$$

• Extract the *I* = 1 component

$$F_V^K(s) = 1 + \frac{2L_9^r}{F_\pi^2} - \frac{s}{96\pi^2 F_\pi^2} \left[A_\pi(s,\mu^2) + \frac{1}{2} A_K(s,\mu^2) \right].$$

- At $\mathcal{O}(p^4)$, the pion and kaon vector form factor are the same
- Assumption: we consider that both are also the same at higher energies

Kaon vector form factor Omnès exponential representation

• Different resonance mixing contribution than $F_V^{\pi}(s)$

$$\begin{split} F_{V}^{K}(s) &= \frac{M_{\rho}^{2} + s\left(\tilde{\gamma}e^{i\tilde{\phi}_{1}} + \tilde{\delta}e^{i\tilde{\phi}_{2}}\right)}{M_{\rho}^{2} - s - iM_{\rho}\Gamma_{\rho}(s)} \exp\left\{\operatorname{Re}\left[-\frac{s}{96\pi^{2}F_{\pi}^{2}}\left(A_{\pi}(s) + \frac{1}{2}A_{K}(s)\right)\right) \\ &- \tilde{\gamma}\frac{s\,e^{i\tilde{\phi}_{1}}}{M_{\rho'}^{2} - s - iM_{\rho'}\Gamma_{\rho'}(s)} \exp\left\{-\frac{s\Gamma_{\rho'}(M_{\rho'}^{2})}{\pi M_{\rho'}^{3}\sigma_{\pi}^{3}(M_{\rho'}^{2})}\operatorname{Re}A_{\pi}(s)\right\} \\ &- \tilde{\delta}\frac{s\,e^{i\tilde{\phi}_{2}}}{M_{\rho''}^{2} - s - iM_{\rho''}\Gamma_{\rho''}(s)} \exp\left\{-\frac{s\Gamma_{\rho''}(M_{\rho''}^{2})}{\pi M_{\rho''}^{3}\sigma_{\pi}^{3}(M_{\rho''}^{2})}\operatorname{Re}A_{\pi}(s)\right\}, \\ \rho',\rho''(s) &= \Gamma_{\rho',\rho''}\frac{s}{M_{\rho',\rho''}^{2}}\frac{\sigma_{\pi}^{3}(s)}{\sigma_{\pi}^{3}(M_{\rho',\rho''}^{2})}\theta(s - 4m_{\pi}^{2})\,. \end{split}$$

- Extract the phase $\tan \phi_{KK}(s) = \operatorname{Im} F_V^K(s) / \operatorname{Re} F_V^K(s)$
- Use a three-times subtracted dispersion relation

Г

Fit results to BaBar $\tau^- \rightarrow K^- K_S \nu_{\tau}$ data

Deremeter	$s_{\rm cut} = 4 [{\rm GeV}^2]$]		
Farameter	Fit i)	Fit <i>ii</i>)	Fit <i>iii</i>)	Fit iv)	1	
$\tilde{\alpha}_1$	= 1.88(1)	= 1.84	= 1.88(1)	—	1	
\tilde{lpha}_2	= 4.34(1)	= 4.34	= 4.34(1)	—		
$M_{\rho'}$ [MeV]	1467(24)	1538(32)	1489(25)	1411(12)		
$\Gamma_{\rho'}$ [MeV]	415(48)	604(83)	297(36)	394(35)		
$\tilde{\gamma}'$	0.10(2)	0.36(11)	0.10(2)	0.09(1)		
$ ilde{\phi}_1$	-1.19(16)	-1.48(13)	-1.10(15)	-1.88(9)		
χ^2 /d.o.f.	2.9	1.9	2.9	3.3	1	
100- 601 × ⁸⁰⁰ × ⁹³³ 600- 1.0	1.2	1.4 m _{KKs} [GeV]	BaBar data Our predic Our fit (exp Our fit (disp Our fit disp	a (2018) tion ponential) persive) 1902.0	2273 [I	nep-ph]
S.Gonzàlez-Solís		Phi to Psi 2019		marc	h 1, 2019	22/33

Combined analysis of $F_V^{\pi}(s)$ and $\tau^- \rightarrow K^- K_S \nu_{\tau}$

S.Gonzàlez-Solís

Phi to Psi 2019

march 1, 2019 23 / 33

Combined analysis of $\tau^- \to K_S \pi^- \nu_\tau$ and $\tau^- \to K^- \eta \nu_\tau$ decays

• $R\chi T$ with two resonances: $K^*(892)$ and $K^*(1410)$

We then have a phase with two resonances

$$\delta^{K\pi}(s) = \tan^{-1} \left[\frac{\mathrm{Im} F_V^{K\pi}(s)}{\mathrm{Re} F_V^{K\pi}(s)} \right]$$

S.Gonzàlez-Solís

Phi to Psi 2019

Vector Form Factor: Dispersive representation

 Three subtractions: helps the convergence of the form factor and suppresses the high-energy region of the integral

$$F_{V}^{K\pi}(s) = P(s) \exp\left[\alpha_{1} \frac{s}{m_{\pi^{-}}^{2}} + \frac{1}{2} \alpha_{2} \frac{s^{2}}{m_{\pi^{-}}^{4}} + \frac{s^{3}}{\pi} \int_{s_{K\pi}}^{s_{cut}} ds' \frac{\delta^{K\pi}(s')}{(s')^{3}(s'-s-i0)}\right]$$

• $\alpha_{1} = \lambda'_{+}$ and $\alpha_{1}^{2} + \alpha_{2} = \lambda''_{+}$ low energies parameters
 $F_{V}^{K\pi}(t) = 1 + \frac{\lambda'_{+}}{t} t + \frac{1}{2} \frac{\lambda''_{+}}{t^{+}} t^{2}$

$$F_V^{K\pi}(t) = 1 + \frac{\lambda_+}{M_{\pi^-}^2} t + \frac{1}{2} \frac{\lambda_+}{M_{\pi^-}^4}$$

- s_{cut} : cut-off to check stability
- Parameters to Fit: $\lambda'_{+}, \lambda''_{+}, m_{K^*}, \gamma_{K^*}, m_{K^{*\prime}}, \gamma_{K^{*\prime}}$

Results of the combined $\tau^- \rightarrow K_S \pi^- \nu_{\tau}$ and $\tau^- \rightarrow K^- \eta \nu_{\tau}$ analysis

Results of the combined $\tau^- \rightarrow K_S \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \eta \nu_\tau$ analysis

 Different choices regarding linear slopes and resonance mixing parameters (s_{cut} = 4 GeV²)

Fitted value	Reference Fit	Fit A	Fit B	Fit C
$\bar{B}_{K\pi}(\%)$	0.404 ± 0.012	0.400 ± 0.012	0.404 ± 0.012	0.397 ± 0.012
$(B_{K\pi}^{th})(\%)$	(0.402)	(0.394)	(0.400)	(0.394)
M_{K^*}	892.03 ± 0.19	892.04 ± 0.19	892.03 ± 0.19	892.07 ± 0.19
Γ_{K^*}	46.18 ± 0.42	46.11 ± 0.42	46.15 ± 0.42	46.13 ± 0.42
$M_{K^{*\prime}}$	1305^{+15}_{-18}	1308^{+16}_{-19}	1305^{+15}_{-18}	1310^{+14}_{-17}
$\Gamma_{K^{*\prime}}$	168^{+52}_{-44}	212_{-54}^{+66}	174_{-47}^{+58}	184_{-46}^{+56}
$\gamma_{K\pi} \times 10^2$	$= \gamma_{K\eta}$	$-3.6^{+1.1}_{-1.5}$	$-3.3^{+1.0}_{-1.3}$	$= \gamma_{K\eta}$
$\lambda'_{K\pi} \times 10^3$	23.9 ± 0.7	23.6 ± 0.7	23.8 ± 0.7	23.6 ± 0.7
$\lambda_{K\pi}^{\prime\prime} \times 10^4$	11.8 ± 0.2	11.7 ± 0.2	11.7 ± 0.2	11.6 ± 0.2
$\bar{B}_{K\eta} \times 10^4$	1.58 ± 0.10	1.62 ± 0.10	1.57 ± 0.10	1.66 ± 0.09
$(B_{Kn}^{th'}) \times 10^4$	(1.45)	(1.51)	(1.44)	(1.58)
$\gamma_{K\eta} \times 10^2$	$-3.4^{+1.0}_{-1.3}$	$-5.4^{+1.8}_{-2.6}$	$-3.9^{+1.4}_{-2.1}$	$-3.7^{+1.0}_{-1.4}$
$\lambda'_{K\eta} \times 10^3$	20.9 ± 1.5	$=\lambda'_{K\pi}$	21.2 ± 1.7	$=\lambda'_{K\pi}$
$\lambda_{K\eta}^{\prime\prime} \times 10^4$	11.1 ± 0.4	11.7 ± 0.2	11.1 ± 0.4	11.8 ± 0.2
χ^2 /n.d.f.	$108.1/105 \sim 1.03$	$109.9/105 \sim 1.05$	$107.8/104 \sim 1.04$	111.9/106 ~ 1.06

Results of the combined $\tau^- \rightarrow K_S \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \eta \nu_\tau$ analysis

Reference fit results obtained for different values of s_{cut}

Parameter	3.24	4	9	∞
$\bar{B}_{K\pi}(\%)$	0.402 ± 0.013	0.404 ± 0.012	0.405 ± 0.012	0.405 ± 0.012
$(B_{K\pi}^{th})(\%)$	(0.399)	(0.402)	(0.403)	(0.403)
M_{K^*}	892.01 ± 0.19	892.03 ± 0.19	892.05 ± 0.19	892.05 ± 0.19
Γ_{K^*}	46.04 ± 0.43	46.18 ± 0.42	46.27 ± 0.42	46.27 ± 0.41
$M_{K^{*\prime}}$	1301^{+17}_{-22}	1305^{+15}_{-18}	1306^{+14}_{-17}	1306^{+14}_{-17}
$\Gamma_{K^{*\prime}}$	207^{+73}_{-58}	168_{-44}^{+52}	155_{-41}^{+48}	155_{-40}^{+47}
$\gamma_{K\pi}$	= $\gamma_{K\eta}$	= $\gamma_{K\eta}$	= $\gamma_{K\eta}$	$= \gamma_{K\eta}$
$\lambda'_{K\pi} \times 10^3$	23.3 ± 0.8	23.9 ± 0.7	24.3 ± 0.7	24.3 ± 0.7
$\lambda_{K\pi}^{\prime\prime} \times 10^4$	11.8 ± 0.2	11.8 ± 0.2	11.7 ± 0.2	11.7 ± 0.2
$\bar{B}_{K\eta} \times 10^4$	1.57 ± 0.10	1.58 ± 0.10	1.58 ± 0.10	1.58 ± 0.10
$(B_{K\eta}^{th'}) \times 10^4$	(1.43)	(1.45)	(1.46)	(1.46)
$\gamma_{K\eta} \times 10^2$	$-4.0^{+1.3}_{-1.9}$	$-3.4^{+1.0}_{-1.3}$	$-3.2^{+0.9}_{-1.1}$	$-3.2^{+0.9}_{-1.1}$
$\lambda'_{Kn} \times 10^3$	18.6 ± 1.7	20.9 ± 1.5	22.1 ± 1.4	22.1 ± 1.4
$\lambda_{K\eta}^{\prime\prime} \times 10^4$	10.8 ± 0.3	11.1 ± 0.4	11.2 ± 0.4	11.2 ± 0.4
χ^2 /n.d.f.	105.8/105	108.1/105	111.0/105	111.1/105

Results of the combined $\tau^- \rightarrow K_S \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \eta \nu_\tau$ analysis

Central results including the largest variation of s_{cut}

$$M_{K^{*-}(892)} = 892.03 \pm 0.19 \text{ MeV}$$
 for gain

$$M_{K^{*-}(892)} = 46.18 \pm 0.44 \text{ MeV}$$
 for gain

$$M_{K^{*-}(1410)} = 1305^{+16}_{-18} \text{ MeV}$$
 fimprovement

$$\Gamma_{K^{*-}(1410)} = 168^{+65}_{-59} \text{ MeV}$$
 fimprovement

$$\gamma_{K\pi} = \gamma_{K\eta} = -3.4^{+1.2}_{-1.4} \cdot 10^{-2}$$
 for $\gamma_{K\pi} = (0.0404 \pm 0.012)\%$

$$\overline{B}_{K\eta} = (1.58 \pm 0.10) \cdot 10^{-4}$$
 $\chi^2/d.o.f = 108.1/105 = 1.03$

$$M_{K^{*-}(1410)} = 1.03$$

Phi to Psi 2019

100

200

300

 $\Gamma_{K^{*'}(1410)}$ [MeV]

500

 $(\tau^- \rightarrow K^- \eta v_{\tau})$ This work

400

Results of the combined $\tau^- \rightarrow K_S \pi^- \nu_{\tau}$ and $\tau^- \rightarrow K^- \eta \nu_{\tau}$ analysis

Results of the combined $\tau^- \rightarrow K_S \pi^- \nu_{\tau}$ and $\tau^- \rightarrow K^- \eta \nu_{\tau}$ analysis

$$\lambda_{K\pi}'' = (11.8 \pm 0.2) \cdot 10^{-4}$$
$$\lambda_{K\eta}'' = (11.1 \pm 0.5) \cdot 10^{-4}$$

$\tau^- \rightarrow \pi^- \eta^{(\prime)} \nu_{\tau}$: Invariant mass distribution and Branching Ratio

- Theory predictions: $BR \sim 1 \times 10^{-5}$ (Escribano'16, Moussallam'14)
- BaBar: $BR < 9.9 \cdot 10^{-5} 95\%$ CL , Belle: $BR < 7.3 \cdot 10^{-5} 90\%$ CL

• $\tau^- \to \pi^- \eta' \nu_\tau$

- Theory predictions: $BR \sim [10^{-7}, 10^{-6}]$ (Escribano'16)
- BaBar: $BR < 4 \cdot 10^{-6} 90\%$ CL

Challenging for Belle II

see talk by P. Rados

Outlook

- Tau physics is a very rich field to test QCD and EW
- Important experimental activities: Belle (II), BaBar, LHCb, BESIII
- τ decays into two mesons are a privileged laboratory to access the non-perturbative regime of QCD
- Form Factors from dispersion relations with subtractions
 - Extraction of the $K^*(892)$ parameters from a fit to $\tau \to K_S \pi^- \nu_\tau$
 - Extraction of the $K^*(1410)$ from $\tau^- \to K_S \pi^- \nu_\tau$ and $\tau^- \to K^- \eta \nu_\tau$
 - $F_V^{\pi}(s)$: important for testing QCD dynamics and the SM and NP
 - $\tau^- \rightarrow K_S K^- \nu_{\tau}$: extraction of the $\rho(1450)$ and $\rho(1700)$ parameters
- A lot of interesting physics to be done in the tau sector

Hadronic Tau decays

Test of QCD and ElectroWeak Interactions

S.Gonzàlez-Solís

Phi to Psi 2019

Pion vector form factor: Chiral Perturbation Theory $\mathcal{O}(p^4)$

$$F_{\pi}^{V}(s) = 1 + \frac{2L_{9}^{r}(\mu)}{F_{\pi}^{2}}s - \frac{s}{96\pi^{2}F_{\pi}^{2}}\left(A_{\pi}(s,\mu^{2}) + \frac{1}{2}A_{K}(s,\mu^{2})\right)$$
$$A_{P}(s,\mu^{2}) = \log\frac{m_{P}^{2}}{\mu^{2}} + 8\frac{m_{P}^{2}}{s} - \frac{5}{3} + \sigma_{P}^{3}(s)\log\left(\frac{\sigma_{P}(s) + 1}{\sigma_{P}(s) - 1}\right), \sigma_{P}(s) = \sqrt{1 - 4\frac{m_{P}^{2}}{s}}$$

Pion vector form factor: Chiral Perturbation Theory $\mathcal{O}(p^4)$

Pion vector Form Factor: ChPT with resonances

• Resonace Chiral Theory

$$F_V^{\pi}(s) = 1 + \frac{F_V G_V}{F_{\pi}^2} \xrightarrow{s} \xrightarrow{F_V G_V = F_{\pi}^2} \frac{M_{\rho}^2}{M_{\rho}^2 - s} ,$$

Expansion in s and comparing ChPT and RχT

$$F_{\pi}^{V}(s) = 1 + \frac{2L_{9}^{r}(\mu)}{F_{\pi}^{2}}s - \frac{s}{96\pi^{2}F_{\pi}^{2}}\left(A_{\pi}(s,\mu^{2}) + \frac{1}{2}A_{K}(s,\mu^{2})\right)$$
$$F_{\pi}^{V}(s) = 1 + \left(\frac{s}{M_{\rho}^{2}}\right) + \left(\frac{s}{M_{\rho}^{2}}\right)^{2} + \cdot$$

• Chiral coupling estimate: $L_9^r(M_{\rho}) = \frac{F_V G_V}{2M_{\rho}^2} = \frac{F_{\pi}^2}{2M_{\rho}^2} \sim 7.2 \times 10^{-3}$

• Combining ChPT and $R\chi T$

$$F_V^{\pi}(s) = \frac{M_{\rho}^2}{M_{\rho}^2 - s} - \frac{s}{96\pi^2 F_{\pi}^2} \left[A_{\pi}(s,\mu^2) + \frac{1}{2} A_K(s,\mu^2) \right],$$

ChPT with resonances + Omnès: Exponential representation

• Incorporate the (off-shell) ρ width

$$\begin{split} \Gamma_{\rho}(s) &= -\frac{M_{\rho}s}{96\pi^2 F_{\pi}^2} \mathrm{Im} \left[A_{\pi}(s) + \frac{1}{2} A_K(s) \right] \\ &= \frac{M_{\rho}s}{96\pi F_{\pi}^2} \left[\sigma_{\pi}(s)^3 \theta(s - 4m_{\pi}^2) + \sigma_K(s)^3 \theta(s - 4m_K^2) \right]. \end{split}$$

$$F_V^{\pi}(s) = \frac{M_{\rho}^2}{M_{\rho}^2 - s - iM_{\rho}\Gamma_{\rho}(s)} \exp\left\{-\frac{s}{96\pi^2 F_{\pi}^2} \operatorname{Re}\left[A_{\pi}(s,\mu^2) + \frac{1}{2}A_K(s,\mu^2)\right]\right\}$$

ChPT with resonances + Omnès+ ρ', ρ'' : Exponential representation

ChPT with resonances + Omnès+ ρ', ρ'' : Exponential representation

march 1, 2019 40 / 33

Variant (I)

• Fits for different values of $s_{\rm cut}$ and allowing the ρ -mass to float

	Paramotor		$s_{ m cut}$ [GeV 2]			
Fits	i alametei	m_{τ}^2	4 (reference fit)	10	∞	
Fit 1 - <i>ρ</i>	α_1 [GeV ⁻²]	1.88(1)	1.88(1)	1.89(1)	1.88(1)	
	$lpha_2$ [GeV ⁻⁴]	4.37(3)	4.34(1)	4.31(3)	4.34(1)	
	$m_{ ho}$ [MeV]	773.9(3)	773.8(3)	773.9(3)	773.9(3)	
	$M_{ ho}$ [MeV]	$= m_{ ho}$	$= m_{\rho}$	$= m_{ ho}$	$= m_{\rho}$	
	$M_{ ho'}$ [MeV]	1382(71)	1375(11)	1316(9)	1312(8)	
	$\Gamma_{\rho'}$ [MeV]	516(165)	608(35)	728(92)	726(26)	
	$M_{\rho''}$ [MeV]	1723(1)	1715(22)	1655(1)	1656(8)	
	$\Gamma_{\rho''}$ [MeV]	315(271)	455(16)	569(160)	571(13)	
	γ	0.12(13)	0.16(1)	0.18(2)	0.17(1)	
	ϕ_1	-0.56(35)	-0.69(1)	-1.40(19)	-1.41(8)	
	δ	-0.09(3)	-0.13(1)	-0.17(4)	-0.17(3)	
	ϕ_2	-0.19(69)	-0.45(12)	-1.06(10)	-1.05(11)	
	χ^2 /d.o.f	1.09	0.70	0.63	0.66	

Dispersive representation: on the singularities at $s = s_{cut}$

• Modulus squared of the pion form factor for $s_{\rm cut} = m_{\tau}, 4 \, {\rm GeV}^2$

Form Factor phase shift including systematic th. uncertainties

• Form Factor including systematic th. uncertainties


```
S.Gonzàlez-Solís
```

$\tau^- \rightarrow \nu_{\tau}$ +strange

• Tau partial width to strange $\sim 3\%$

Branching fraction	HFAG Winter 2012 fit
$\Gamma_{10} = K^- \nu_\tau$	$(0.6955 \pm 0.0096) \cdot 10^{-2}$
$\Gamma_{16} = K^- \pi^0 u_ au$	$(0.4322 \pm 0.0149) \cdot 10^{-2}$
$\Gamma_{23} = K^- 2 \pi^0 u_ au ~({ m ex.}~K^0)$	$(0.0630 \pm 0.0222) \cdot 10^{-2}$
$\Gamma_{28} = K^- 3 \pi^0 u_{ au} ~({ m ex.}~K^0,\eta)$	$(0.0419 \pm 0.0218) \cdot 10^{-2}$
$\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$	$(0.8206 \pm 0.0182) \cdot 10^{-2}$
$\Gamma_{40}=\pi^-\overline{K}^0\pi^0 u_ au$	$(0.3649 \pm 0.0108) \cdot 10^{-2}$
$\Gamma_{44} = \pi^- \overline{K}^0 \pi^0 \pi^0 \nu_\tau$	$(0.0269 \pm 0.0230) \cdot 10^{-2}$
$\Gamma_{53} = \overline{K}^0 h^- h^- h^+ u_{ au}$	$(0.0222 \pm 0.0202) \cdot 10^{-2}$
$\Gamma_{128} = K^- \eta u_{ au}$	$(0.0153 \pm 0.0008) \cdot 10^{-2}$
$\Gamma_{130}=K^{-}\pi^{0}\eta u_{ au}$	$(0.0048 \pm 0.0012) \cdot 10^{-2}$
$\Gamma_{132} = \pi^- \overline{K}^0 \eta \nu_\tau$	$(0.0094 \pm 0.0015) \cdot 10^{-2}$
$\Gamma_{151} = K^- \omega u_ au$	$(0.0410 \pm 0.0092) \cdot 10^{-2}$
$\Gamma_{801} = K^- \phi u_ au(\phi o KK)$	$(0.0037 \pm 0.0014) \cdot 10^{-2}$
$\Gamma_{802} = K^- \pi^- \pi^+ u_{ au} \; (ext{ex. } K^0, \omega)$	$(0.2923 \pm 0.0068) \cdot 10^{-2}$
$\Gamma_{803} = K^- \pi^- \pi^+ \pi^0 \nu_{\tau} ~({ m ex.}~K^0,\omega,\eta)$	$(0.0411 \pm 0.0143) \cdot 10^{-2}$
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.8746 \pm 0.0498) \cdot 10^{-2}$

•
$$\tau \to (K\pi)^- \nu_\tau$$
 and $\tau \to K^- \eta^{(\prime)} \nu_\tau \longrightarrow$ this talk