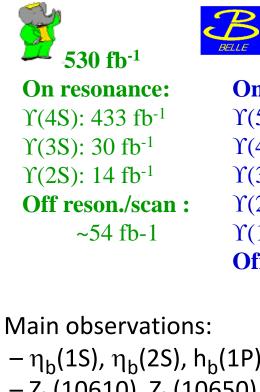

International Workshop on e^+e^- collisions from ϕ to ψ , 26 February 2019, Novosibirsk


Review of bottomonium studies at Belle

Roman Mizuk

Lebedev Physical Institute of the Russian Academy of Sciences

Bottomonium at B-factories

On resonance: Υ(5S): 121 fb⁻¹ Υ(4S): 711 fb⁻¹ $\Upsilon(3S): 3 \text{ fb}^{-1}$ $\Upsilon(2S): 24 \text{ fb}^{-1}$ $\Upsilon(1S): 6 \text{ fb}^{-1}$ **Off reson./scan :**

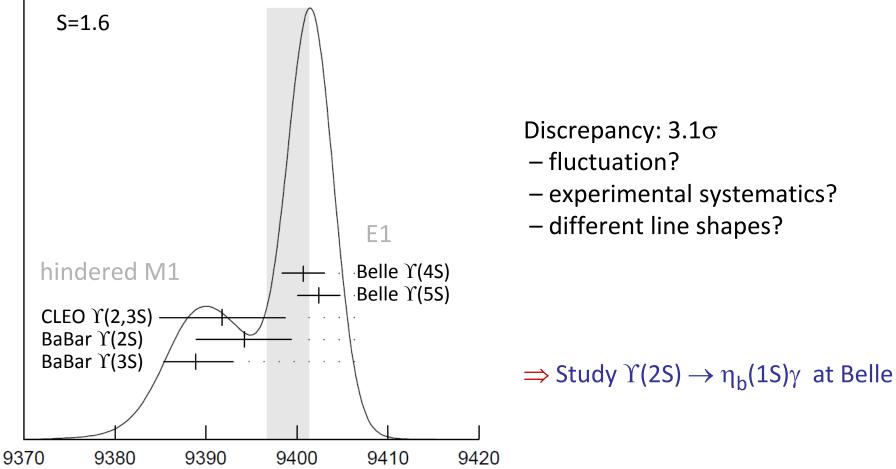
~100 fb-1

- $-\eta_{b}(1S), \eta_{b}(2S), h_{b}(1P), h_{b}(2P)$
- $-Z_{\rm b}(10610), Z_{\rm b}(10650)$

– anomalous transitions from $\Upsilon(4,5,6S)$

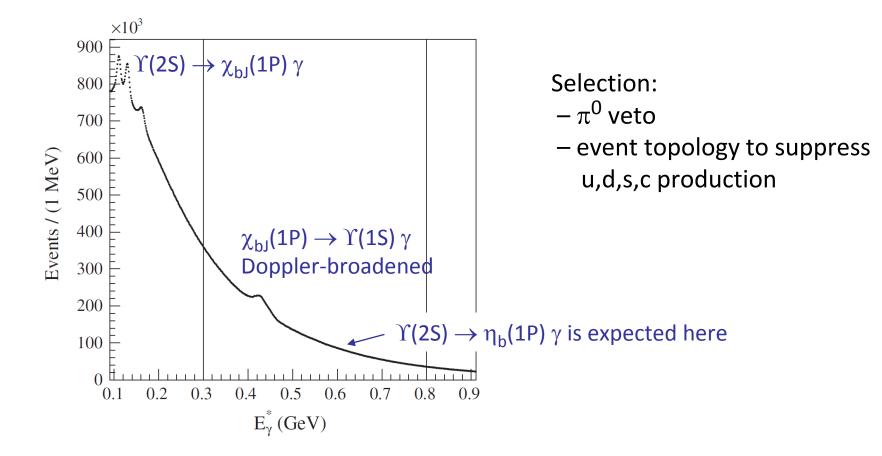
My talk:

New measurement of $\eta_{\rm b}(1S)$ mass Observation of $\Upsilon(4S) \rightarrow \Upsilon(1S) \eta'$ Energy scan of $e^+e^- \rightarrow \chi_{bl}(1P) \pi^+\pi^-\pi^0$


PRL121,232001(2018)

New measurement of $\eta_b(1S)$ mass

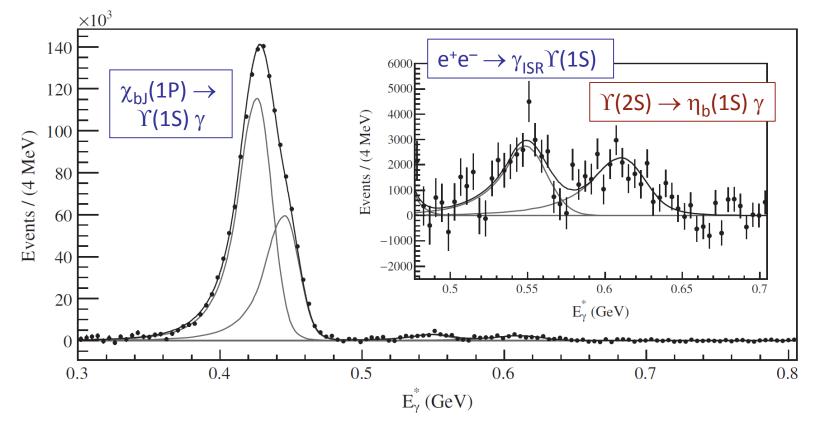
η_{b} (1S) mass


BaBar, CLEO: $\Upsilon(2,3S) \rightarrow \eta_b(1S) \gamma$ hindered M1 Belle: $\Upsilon(4S) \rightarrow h_b(1S) \eta$ $\Upsilon(5S) \rightarrow h_b(1S) \pi^+\pi^ h_b(1P) \rightarrow \eta_b(1S) \gamma$ E1 PRL101, 071801 (2008) PRL103, 161801 (2009) PRD81, 031104 (2010)

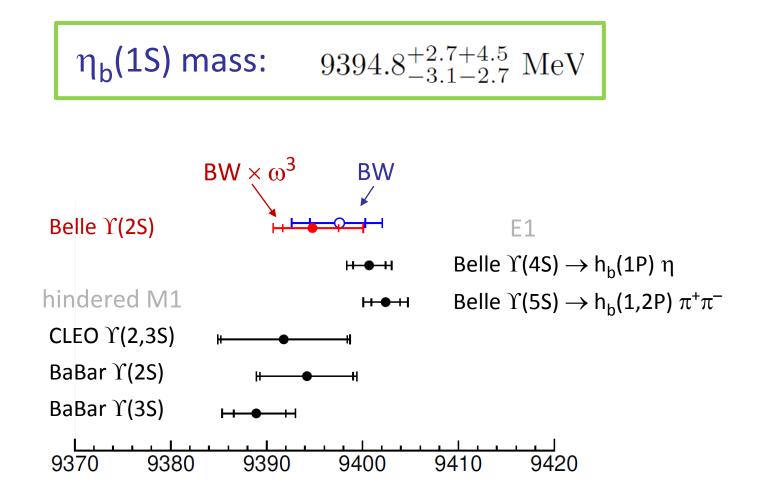
PRL 109, 232002 (2012) PRL 115, 142001 (2015)

Method

 Υ (2S) data: 25 fb⁻¹, 158M Υ (2S) decays c.f. BaBar: 14 fb⁻¹ Υ (2S) → η_b(1S) γ : inclusive reconstruction – study energy spectrum of all photons.



Calibration of MC simulation: $\chi_{bJ}(1P) \rightarrow \Upsilon(1S) \gamma \rightarrow \mu^+ \mu^- \gamma$, $\eta \rightarrow 2\gamma$, $D^{*0} \rightarrow D^0 \gamma$


Fit to E_{γ}^* spectrum

Combinatorial background: exp × 6th order polynomial

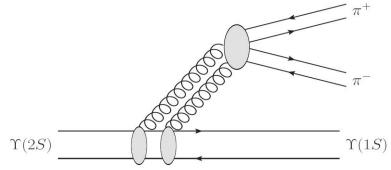
Peaking components: shapes from MC, parametrized by asymmetric Gaussians with power-law tails. Width of $\eta_b(1S)$ is fixed: $\Gamma = 10^{+5}_{-4}$ MeV.

Significance of $\Upsilon(2S) \rightarrow \eta_b(1S)\gamma$ exceeds $7\sigma \Rightarrow$ first observation. Peak positions and yields of $\chi_{bJ}(1P)$ and ISR agree with expectations.

Default parametrization is $BW \times \omega^3$, if changed to $BW \rightarrow shift$ in mass +2.8 MeV.

New result hints that discrepancy is due to a fluctuation. Accuracy is insufficient for firm conclusion. \Rightarrow Need more data at $\Upsilon(2S) \leftarrow$ BelleII

PRL 121,062001(2018)

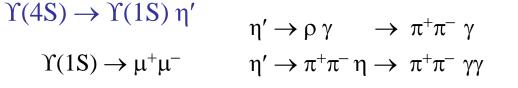

Observation of $\Upsilon(4S) \rightarrow \Upsilon(1S) \eta'$

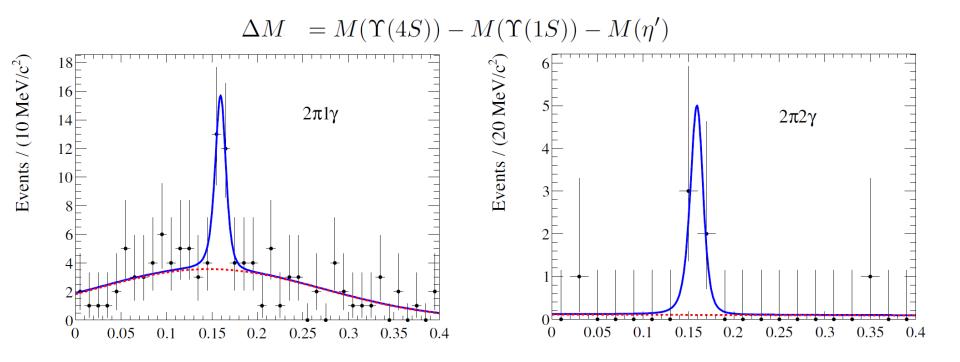
Experimental status

Bondar, RM, Voloshin MPLA32,1750025(2017)

Transition	Partial width (keV)
$\Upsilon(2S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	5.7 ± 0.5
$\Upsilon(1S)\eta$	$(9.3 \pm 1.5) \times 10^{-3}$
$\Upsilon(3S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	0.89 ± 0.08
$\Upsilon(1S)\eta$	$< 2 \times 10^{-3}$
$\Upsilon(2S) \pi^+ \pi^-$	0.57 ± 0.06
$\Upsilon(4S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	1.7 ± 0.2
$\Upsilon(1S) \eta$	4.0 ± 0.8

In bottomonium hadronic transitions are OZI suppressed:


π⁺π⁻ transitions: E1E1 gluons,
transitions: E1M2 gluons
– Heavy Quark Spin Symmetry suppressed


\Leftarrow B meson loops?

 \Rightarrow Search for $\Upsilon(4S) \rightarrow \Upsilon(1S) \eta'$

496 fb⁻¹ of Υ (4S) data

Signal shapes: from MC, background: broad Gaussian $(2\pi 1\gamma)$, linear $(2\pi 2\gamma)$ Significances: 4.2 σ $(2\pi 1\gamma)$, 4.1 σ $(2\pi 2\gamma)$, combined: 5.7 σ including systematics.

Experimental status

Bondar, RM, Voloshin MPLA32,1750025(2017)

Transition	Partial width (keV)		
$\Upsilon(2S) \rightarrow$			
$\Upsilon(1S) \pi^+ \pi^-$	5.7 ± 0.5		
$\Upsilon(1S)\eta$	$(9.3 \pm 1.5) \times 10^{-3}$		
$\Upsilon(3S) \rightarrow$			
$\Upsilon(1S) \pi^+ \pi^-$	0.89 ± 0.08		
$\Upsilon(1S)\eta$	$< 2 \times 10^{-3}$		
$\Upsilon(2S) \pi^+ \pi^-$	0.57 ± 0.06		
$\Upsilon(4S) \rightarrow$			
$\Upsilon(1S) \pi^+ \pi^-$	1.7 ± 0.2		
$\Upsilon(1S)\eta$	4.0 ± 0.8		
$\Upsilon(1S) \eta'$	0.70 ± 0.18		

Results

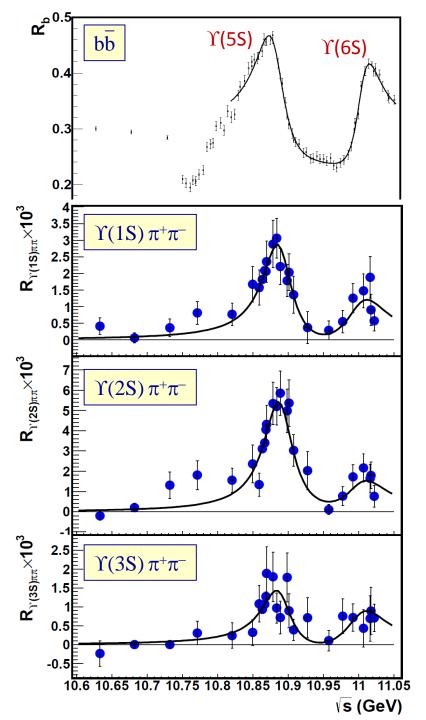
$$\mathcal{B}(\Upsilon(4S) \to \eta' \Upsilon(1S)) =$$

(3.43 ± 0.88(stat.) ± 0.21(syst.)) × 10⁻⁵

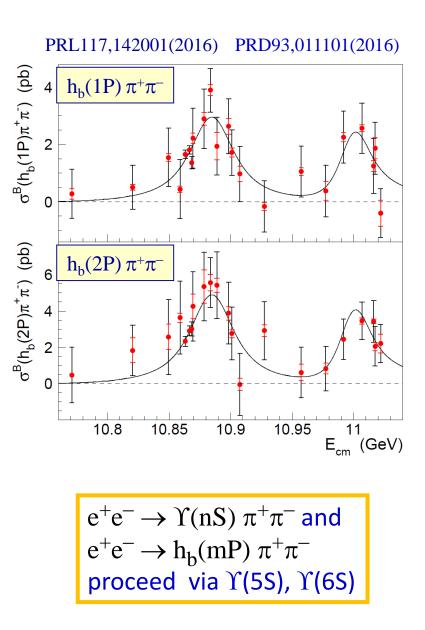
$$R_{\eta'/\eta} = 0.20 \pm 0.06$$

 \Rightarrow Measured $R_{\eta^{\prime}\!/\eta}$ agrees with prediction of hadron loops model.

Energy scan of $e^+e^- \rightarrow \chi_{bJ}(1P) \pi^+\pi^-\pi^0$

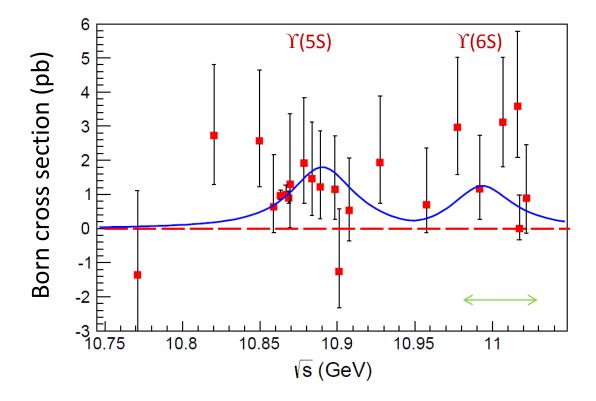

Transition	Partial width (ke	eV)
$\Upsilon(2S) \to$		
$\Upsilon(1S) \pi^+ \pi^-$	5.7 ± 0.5	
$\Upsilon(1S)\eta$	$(9.3 \pm 1.5) \times 10^{-5}$	-3
$\Upsilon(3S) \rightarrow$		
$\Upsilon(1S) \pi^+ \pi^-$	0.89 ± 0.08	
$\Upsilon(1S)\eta$	$< 2 \times 10^{-3}$	
$\Upsilon(2S) \pi^+ \pi^-$	0.57 ± 0.06	
$\Upsilon(4S) \rightarrow$		
$\Upsilon(1S) \pi^+ \pi^-$	1.7 ± 0.2	
$\Upsilon(1S)\eta$	4.0 ± 0.8	
$\Upsilon(2S) \pi^+ \pi^-$	1.8 ± 0.3	
$h_b(1P)\eta$	45 ± 7	
$\Upsilon(5S) \rightarrow$		
$\Upsilon(1S) \pi^+ \pi^-$	238 ± 41	
$\Upsilon(1S)\eta$	39 ± 11	
$\Upsilon(1S)K^+K^-$	33 ± 11	
$\Upsilon(2S) \pi^+ \pi^-$	428 ± 83	
$\Upsilon(2S)\eta$	204 ± 44	
$\Upsilon(3S) \pi^+ \pi^-$	153 ± 31	
$\chi_{b1}(1P)\omega$	84 ± 20	
$\chi_{b1}(1P) (\pi^+\pi^-\pi^0)_{{\rm non-}\omega}$	28 ± 11	
$\chi_{b2}(1P)\omega$	32 ± 15	
$\chi_{b2}(1P) (\pi^+\pi^-\pi^0)_{\text{non-}\omega}$	33 ± 20	
$\Upsilon_J(1D) \pi^+\pi^-$	~ 60	
$\Upsilon_J(1D)\eta$	150 ± 48	
$Z_b(10610)^{\pm}\pi^{\mp}$	2070 ± 440	Bond
$Z_b(10650)^{\pm}\pi^{\mp}$	1200 ± 300	MPLA

Transitions from $\Upsilon(4S)$, $\Upsilon(5S)$ violate OZI rule and HQ spin symmetry


Measurements are performed in the peak of each resonance.

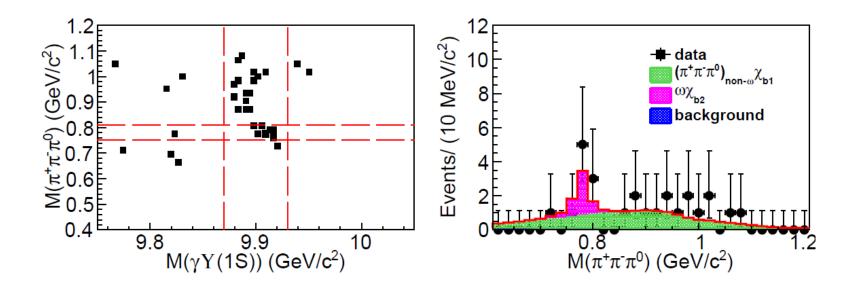
Mechanism: resonant / non-resonant ?

Bondar, RM, Voloshin MPLA32,1750025(2017)



Belle energy scans

Cross section of $e^+e^- \rightarrow \chi_{bl}(1P) \pi^+\pi^-\pi^0$


Exclusive reconstruction: $\chi_{bJ}(1P) \rightarrow \Upsilon(1S) \gamma \qquad \Upsilon(1S) \rightarrow \mu^+\mu^- \text{ or } e^+e^-$ **Extraction of signal:** 2D fit in M($\Upsilon(1S) \gamma$) vs. M($\pi^+\pi^-\pi^0$)

Cross section in scan data is similar to on-resonance measurement. Non-zero values in the Υ (6S) region.

Accuracy is insufficient to establish production mechanism: via $\Upsilon(5,6S)$ or non-res.

Combined data in the Υ (6S) region

Observation of $e^+e^- \rightarrow \chi_{b1} (\pi^+\pi^-\pi^0)_{non-\omega}$ 5.3 σ Evidence for $e^+e^- \rightarrow \chi_{b1} \omega$ 4.0 σ

No sign of $e^+e^- \rightarrow \chi_{bJ} \phi$ $\sigma < 1pb$

Interesting to perform energy scan with more data.

Conclusions

Recent Belle results on bottomonium:

Observation of $\Upsilon(2S) \rightarrow \eta_b(1S) \gamma$ PRL 121, 232001 (2018)Observation of $\Upsilon(4S) \rightarrow \Upsilon(1S) \eta'$ PRL 121, 062001 (2018)Energy scan of $e^+e^- \rightarrow \chi_{bI}(1P) \pi^+\pi^-\pi^0$ PRD 98, 091102 (2018)

On-going Belle analyses:

Energy scan of $B\overline{B}$, $B\overline{B}^*$, $B^*\overline{B}^*$,... cross sections Update on line shape of Z_b states in elastic channels Search for $\Upsilon(5S) \rightarrow W_{bJ} \gamma \rightarrow (\Upsilon(1S)\pi^+\pi^-) \gamma$ Search for $\Upsilon(4S,5S) \rightarrow \eta_b(1S,2S) \omega$...

Your wishes on what should (still) be studied at Belle ?