

Amplitude analysis (AA) of $e^+e^- \rightarrow \pi^+\pi^-2\pi^0$ and $e^+e^- \rightarrow 2\pi^+2\pi^$ reactions with the CMD-3 detector

Evgeny Kozyrev BINP, NSU e.a.kozyrev@inp.nsk.su 01.03.2019

1. For the measurement of the **cross section of the e**⁺**e**⁻ \rightarrow **4** π reaction we are required to find out which intermediate states are involved in this process in order to obtain a correct value of detection efficiency.

2. The AA allows to describe experimental data by phenomenological **model**.

3. Actually, the phenomenological approach is far from the **fundamental understanding** of the process of the hadronization of the produced pair of quarks and of four pions production.

The amplitude analysis at CMD-2 (5.8 pb⁻¹)

- The data in the ee $\rightarrow \pi^+\pi^-2\pi^0$ (22128 events) with $\sqrt{s} = [1.05-1.38]$ GeV is used
- The dominance of the $\omega \pi$ and $a_1 \pi$ is proved

	â			
Model	L_{\min}	<i>r_X</i> [%]	U.L. [%]	
$\overline{\omega \pi^0 + a_1 \pi}$	1264	-	-	
$\omega \pi^0 + a_1 \pi + \rho \sigma$	1256	$2.1^{+1.2}_{-0.9}$	4.3	
$\omega\pi^0 + a_1\pi + h_1\pi$	1263	$0.1^{+0.2}_{-0.1}$	0.4	
$\omega \pi^0 + a_1 \pi + a_2 \pi$	1263	$0.2^{+0.4}_{-0.2}$	0.8	
$\omega\pi^0 + a_1\pi + \pi'\pi$	1250	$9.5^{+3.2}_{-2.8}$	15.	
$\omega\pi^0 + a_1\pi + \rho^+\rho^-$	1246	$4.7^{+2.0}_{-1.6}$	7.7	

R.R. Akhmetshin et al., Physics Letters B **466**, 392–402 (1999)

- The data in ee $\rightarrow \pi^+\pi^-2\pi^0$ and ee $\rightarrow 2\pi^+2\pi^-$ (28552) is used for the estimation: B(a₁ $\rightarrow \sigma\pi$)/B(a₁ $\rightarrow \rho\pi$) ~ 0.3
- The measured cross section are systematically shifted from other measurement.

The results of a search for the admixture of other possible states

Amplitude analysis of τ→3ππ⁰ν_τat CLEO (1999)

• Model with $\omega \pi$ and $a_1 \pi$ and $\rho \sigma$, ρf_0 provides the best description of the data. *Physical Review D - Particles, Fields, Gravitation and Cosmology,* **61**, 1-16 (2000).

There are evidences of $ho f_0$ and $ho f_2$ at higher energies with BaBar detector

The evidence of ρf_0 in the process e+e- \rightarrow 2pi0pi-pi+ with BaBar

Two pion invariant mass spectra in the process $e+e- \rightarrow 2pi+2pi- 6$

General strategy

Signal selection (ee \rightarrow pi⁺pi⁻2pi⁰) Signal selection (ee \rightarrow 2pi⁺2pi⁻)

Building of the amplitudes formalism

The definition and minimization of likelihood function (L)

Model vs Experiment comparison

Signal selection (ee → pi⁺pi⁻2pi⁰) 64 kevents

- $0.7 < \theta_{_{\pi,\gamma}} < \pi 0.7$ rad
- Total (E- \sqrt{s}) and P < 150 MeV/(c)
- \bullet Two candidates for π^0
- 5C kinematic fit

• The invariant mass spectrum of 3rd and 4th photons is used for the estimation of the contribution of background:

Signal selection

(ee \rightarrow 2pi⁺2pi⁻) 72 kevents

- $0.7 < \theta_{\pi} < \pi 0.7$ rad
- Total (E- \sqrt{s}) and P < 150 MeV/(c)
- 4C kinematic fit
- The spectrum of total energy of four tracks (E- \sqrt{s}) is used for the estimation of the contribution of background:

The production of 4π system can proceed via a list of intermediate states:

- $-\omega [1^{--}] \pi^0 [0^{-+}] ($ Only $2\pi^{\pm} 2\pi^0)$
- $a_1(1200)[1^+] \pi[0^-]$
- $\rho[1^{--}] f_0(980)[0^{++}]$
- $ho[1^{--}] \sigma(500)[0^{++}]$
- $\rho[1^{--}] f_2(1270)[2^{++}]$
- $\rho^{+}[1^{-}] \rho^{-}[1^{-}] (\text{Only } 2\pi^{\pm}2\pi^{0})$
- $a_2(1320)[2^{++}] \pi[0^{-}]$
- $h_1(1170)[1^{+-}] \pi^0[0^{-+}]$ (Only $2\pi^{\pm}2\pi^0$)

To get magnitudes of amplitudes we perform unbinned likelihood amplitude analysis. The relative number of events I at a particular point Ω in phase space can be represented as

$$I(\Omega) = |V_{\alpha}A_{\alpha}(\Omega)|^2 \cdot d\Phi(\Omega),$$

where the sum runs over all intermediate states, V_{α} - the complex production amplitude (the free parameter) and $A_{\alpha}(\Omega)$ - the amplitude at a particular point in phase space. The likelihood for model under test is

$$L = -\log \prod_{i=signal}^{pi^{+}pi^{-}2pi^{0}} \frac{I(\Omega_{i})}{\int \varepsilon I(\Omega) d\Omega} - \log \prod_{i=signal}^{2pi^{+}2pi} \frac{I(\Omega_{i})}{\int \varepsilon I(\Omega) d\Omega}$$

The limited acceptance and efficiency of the detector is taken into account by summing only over simulated events that pass the reconstruction and analysis cuts.

$$\int arepsilon I(\Omega) d\Omega = rac{1}{N_{MC}^{gen}} \sum_{rec}^{phase \ space \ MC} |V_{lpha} A_{lpha}(\Omega)|^2$$

- An amplitude is normalized to 1: $\int |A_{\alpha}(\Omega)|^2 d\Omega = 1;$
- The $\omega \pi^0$ amplitude is clearly seen at all energies, so $A_{\omega \pi^0}$ fixes at 1;

• The amplitudes is symmetric (anti-symmetric) with respect to the interchange of the momenta of neutral (charged) mesons according to Bose symmetry and C-parity conservation.

$$\begin{split} L(\omega\rho\pi) &= g_{\omega\rho\pi} \cdot \epsilon_{\mu\nu\rho\sigma} \cdot \delta^{ab} \cdot \omega_{\mu} \cdot d_{\nu}\pi^{\star a} \cdot (d_{\rho}\rho_{\sigma}^{\star b} - d_{\sigma}\rho_{\rho}^{\star b}), \\ L(a_{1}\rho\pi) &= g_{a_{1}\rho\pi} \cdot \epsilon^{abc} \cdot a_{1\mu}^{a} \cdot d_{\nu}\pi^{\star b} \cdot (d_{\mu}\rho_{\nu}^{\star c} - d_{\nu}\rho_{\mu}^{\star c}), \\ L(a_{1}\sigma\pi) &= g_{a_{1}\sigma\pi} \cdot \delta^{ab} \cdot (d_{\mu}a_{1\nu}^{a} - d_{\nu}a_{1\mu}^{a}) \cdot d_{\mu}\phi^{\star}(\sigma) \cdot d_{\nu}\phi^{\star b}(\pi), \\ L(\rho'\rho_{1}f_{0}) &= g_{\rho'\rho_{1}f_{0}} \cdot \delta^{ab} \cdot (d_{\mu}\rho_{\nu}^{'a} - d_{\nu}\rho_{\mu}^{'a})(d_{\mu}\rho_{\nu}^{\star b} - d_{\nu}\rho_{\mu}^{\star b}) \cdot \phi_{f0}^{\star}, \\ L(\rho'\rho^{+}\rho^{-}) &= g_{\rho'\rho^{+}\rho^{-}} \cdot \epsilon^{abc}(d_{\mu}\rho_{\nu}^{'a} - d_{\nu}\rho_{\mu}^{'a}) \cdot (d_{\alpha}\rho_{\nu}^{\star b} - d_{\nu}\rho_{\alpha}^{\star b}) \cdot (d_{\mu}\rho_{\alpha}^{\star c} - d_{\alpha}\rho_{\mu}^{\star c}), \\ L(\rho'h_{1}\pi^{0}) &= g_{\rho'h_{1}\pi^{0}} \cdot \delta^{ab}(d_{\mu}\rho_{\nu}^{'a} - d_{\nu}\rho_{\mu}^{'a}) \cdot (d_{\mu}h_{1\nu}^{\star b} - d_{\nu}h_{1\mu}^{\star b})\phi_{\pi}^{\star}, \end{split}$$

- Masses and central values of widths of resonances are fixed according to PDG.
- Spectral function obtained from the Dyson equation with simplest π - σ coupling is used as the propagator of $\sigma(500)$ [*Phys. Rev. C* **76** 065204 (2007)]
- Flatt e distribution is used for the propagator of (980).

(ee \rightarrow pi⁺pi⁻2pi⁰)

(ee → pi⁺pi⁻2pi⁰)

(ee → pi⁺pi⁻2pi⁰)

(ee → 2pi⁺2pi⁻)

 $(ee \rightarrow 2pi^+2pi^-)$

 $(ee \rightarrow 2pi^+2pi^-)$

 $(ee \rightarrow 2pi^{+}2pi^{-})$

1.1-1.2 GeV

MC

 $1.4 1.6 \ m_{\pi^{1}\pi^{0}}, \ GeV/c^{2}$

1.4 1.6 m_{π⁻π⁰}, GeV/c²

1.2

1.2

1

1200

1000

800

600

400

200

1800

1600

1400

1200

1000

800

- 600

- 400

200

 $m_{\pi^{\circ}\pi^{0}}^{1.4}, \text{ GeV/c}^{2}$

1.2

0.4

0.2

0.2

0.4

871.00 1383.00 932.00 834.00 1034.00 691.00 496.00

0.6

0.8

400

200

0.2

0.4

0.6

0.8

1.5-1.6 GeV

1.7-1.8 GeV

1.87654-1.9 GeV

The cross-section of e+e- → π+π-2π0 obtained by using the model described above

results

• Neither parameterization of the amplitude does not describe the energy dependence of the phase

The cross-section of $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+\pi^- 2\pi^0$ with subtracted sum of R_i

Summary

- The internal dynamics of the reaction $e^+e^- \rightarrow 4\pi$ is studied preliminary in the energy range $\sqrt{s} = [0.95-2.01]$ GeV
- The dominance of the channels ωπ and a₁π is confirmed. The ωπ channel is dominated in the process e+e- → π+π-2π0 up to
 √s ~ 1.5 GeV
- The estimation of the contributions of $\rho\sigma$, ρf_0 , $\rho \rho^+$, ρf_2 is shown.
- The simultaneous analysis of $e^+e^- \rightarrow 2\pi^+ 2\pi^-$, $e^+e^- \rightarrow \pi^+\pi^- 2\pi^0$, $\tau^- \rightarrow \pi^- 3\pi^0 \nu$, $\tau^- \rightarrow 2\pi^-\pi^+\pi^0 \nu$ is proposed

back-up

$$\varepsilon_{4\pi} = \frac{\sum_{det}^{ph.sp.} (|M(p_{\pi^0}, p_{\pi^0}, p_{\pi^+}, p_{\pi^-})|^2)}{\sum_{gen}^{ph.sp.} (|M(p_{\pi^0}, p_{\pi^0}, p_{\pi^+}, p_{\pi^-})|^2)}$$

The max energy of simulated ISR is 0.2 Gev.

Detection efficiency vs. c.m. energy.

Отношение сечений е+е- \to 2pi+2pi- к е+е- \to pi+pi-2pi0. Закрашенная область — эксперимент (из др. работ). Точки с ошибками — результат амплитудного анализа (из данной работы).

Statistical precision is about 2-3% in average