Measurements of the J/ ψ and ψ (2S) leptonic widths with KEDR detector

Kharlamova Tatyana for KEDR Collaboration BINP, NSU PHIPSI19 26.02.2019

Outline

- Introduction
- VEPP-4M / KEDR
- Latest result on J/ψ leptonic width
- Latest result on $\psi(2S)$ leptonic width
- Summary

Charmonium system

Mass (MeV)

1+-

 $J^{PC} =$

 0^{-+}

1--

 0^{++}

1++

J/ψ and $\psi(2S)$ leptonic and total widths

J/ψ widths measurements

$\psi(2s)$ widths measurements

	$\Gamma_{ m ee}$, keV	Γ, keV	Comments		$\Gamma_{ m ee}$, keV	Γ, keV	Comments
BaBar 04	5.61±0.21	94.7±4.4	e⁺e⁻→μ⁺μ⁻γ ISR	BES2 02	2.44 ± 0.21	264±27	e+e-
CLEO 06	5.71±0.16	96.1±3.2	e⁺e⁻→μ⁺μ⁻γ ISR	BES2 06	2.33 ± 0.12	331±58	e⁺e⁻→hadron
KEDR 10	5.51±0.12	94.1±2.7	e+e-→e+e-	BES2 08	2.34 ± 0.10	358±88	e⁺e⁻→hadron
BES3 16	5.58±0.09	-	e⁺e⁻→μ⁺μ⁻γ ISR	BES3 15	2.23±0.10	-	е⁺е⁻→γπ⁺π⁻Ј,
PDG	5.55±0.14±0.02	92.9±2.8		PDG	2.29±0.06	286±16	average
				VEDD 10	0.0010.04		at a-
KEDR 18	5.55 ± 0.11	92.9±1.8	e+e-→hadrons e+e-→e+e-	KEDK 18	2.28±0.04	-	ee

$e^+e^- \rightarrow l^+l^-$ cross section nearby the narrow resonance

The cross section nearby the narrow resonance is described by the sum of 3 contributions: QED process, resonance production and their interference

$$\begin{aligned} \left(\frac{d\sigma}{d\Omega}\right)^{ee \to ee} &= \left(\frac{d\sigma}{d\Omega}\right)^{ee \to ee}_{\text{QED}} + \frac{1}{W^2} \left(1 + \delta_{sf}\right) \left\{\frac{9}{4} \frac{\Gamma_{ee}^2}{\Gamma M} \left(1 + \cos^2\theta\right) \operatorname{Im} f\right\} \\ \frac{3\alpha}{2} \frac{\Gamma_{ee}}{M} \left[\left(1 + \cos^2\theta\right) \operatorname{Re} \frac{f^*}{1 - \Pi_0(s)} - \frac{\left(1 + \cos\theta\right)^2}{\left(1 - \cos\theta\right)} \operatorname{Re} \frac{f^*}{1 - \Pi_0(t)} \right] \right\} \\ \left(\frac{d\sigma}{d\Omega}\right)^{ee \to \mu\mu} &= \left(\frac{d\sigma}{d\Omega}\right)^{ee \to \mu\mu}_{\text{QED}} + \frac{3}{4W^2} \left(1 + \delta_{sf}\right) \left(1 + \cos^2\theta\right) \times \\ \left\{\frac{3\Gamma_{ee}\Gamma_{\mu\mu}}{\Gamma M} \operatorname{Im} f - \frac{2\alpha\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}}{M} \operatorname{Re} \frac{f^*}{1 - \Pi_0(t)} \right\} \end{aligned}$$

(in the soft photon approximation)

$e^+e^- \rightarrow hadrons cross section nearby the narrow resonance$

$$\sigma_{\mathrm{n.r.}}^{\mathrm{hadr}}(W) = \frac{12\pi}{W^2} \left\{ \left(1 + \delta_{\mathrm{sf}} \right) \left[\frac{\Gamma_{ee}\Gamma_{\mathrm{h}}}{\Gamma M} \operatorname{Im} f(W) - \frac{2\alpha\sqrt{R\Gamma_{ee}\Gamma_{\mathrm{h}}}}{3W} \lambda \operatorname{Re} \frac{f^*(W)}{1 - \Pi_0} \right] - \frac{\beta\Gamma_{ee}\Gamma_{\mathrm{h}}}{2\Gamma M} \left[\left(1 + \frac{M^2}{W^2} \right) \arctan \frac{\Gamma W^2}{M(M^2 - W^2 + \Gamma^2)} - \frac{\Gamma M}{2W^2} \ln \frac{\left(\frac{M^2}{W^2} \right)^2 + \left(\frac{\Gamma M}{W^2} \right)^2}{\left(1 - \frac{M^2}{W^2} \right)^2 + \left(\frac{\Gamma M}{W^2} \right)^2} \right] \right\}$$
[Phys. Lett. B 711(2012) 280]

The radiative correction from the structure function approach:

$$\delta_{\rm sf} = \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2}\right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{1}{36}\ln\frac{W}{m_{\rm e}}\right) \text{ with } \beta = \frac{4\alpha}{\pi} \left(\ln\frac{W}{m_{\rm e}} - \frac{1}{2}\right)$$

Function *f* definition:
$$f(W) = \frac{\pi\beta}{\sin\pi\beta} \left(\frac{W^2}{M^2 - W^2 - iM\Gamma}\right)^{1-\beta}$$

To fit resonance the numerical convolution of the analytical cross sections with the energy spread is used

Circumference	366 m
Beam energy	1 – 5 GeV
Number of bunches	2 X 2
Luminosity at 1.5 GeV	$2 \cdot 10^{30} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Luminosity at 5.0 GeV	$2 \cdot 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$

Beam energy measurement:

- Resonant depolarization method Instant measurement accuracy ~1·10⁻⁶ Energy interpolation accuracy (5 – 15) ·10⁻⁶ (10-30 keV)
- Infrared light Compton backscattering Monitoring with accuracy < 100 keV

Detector KEDR

- 1. Vacuum chamber
- 2. Vertex detector
- 3. Drift chamber
- 4. Threshold aerogel counters
- 5. ToF counters
- 6. Liquid krypton calorimeter
- 7. Superconducting coil
- 8. Magnet yoke
- 9. Muon tubes
- $10.\ {\rm CsI}$ calorimeter
- 11. Compensating s/c solenoid

Measurement of $\Gamma_{ee} \cdot B_h(J/\psi)$ and $\Gamma_{ee}(J/\psi)$

9

- Combined fit of hadronic and leptonic events
- Free parameters: $\Gamma_{ee} \cdot B_{ee}(J/\psi)$, $\Gamma_{ee} \cdot B_h(J/\psi)$ or $\Gamma_{ee}(J/\psi)$,
- and also : $m(J/\psi)$, R_L , σ_W , σ_o

Simulation of J/ψ decays

properties Main of hadronic events:

- the number of tracks from the IP,
- the total number of • particles,
- energy deposited in the calorimeter
- inclusive P_t and θ • distributions,
- the ratio of Fox-Wolfram moments H_2/H_0

h=HL/HL

Fair agreement between MC simulation and data

Measurement of $\Gamma_{ee} \cdot B_h(J/\psi)$ and $\Gamma_{ee}(J/\psi)$

- The relative luminosity was measured by bremsstrahlung luminosity monitor
- The absolute luminosity factor was calculated using e⁺e⁻ events

Systematic uncertainties for $\Gamma_{ee}(J/\psi)$

Source	Uncertainty, $\%$					
	Γ_{ee}	$\Gamma_{ee} \cdot \mathcal{B}_{hadrons}$	$\Gamma_{ee} \cdot \mathcal{B}_{ee}$			
Luminosity	1.0	1.0	1.0			
Simulation of J/ψ decays	0.7	0.7	—			
Detector response	0.8	0.8	0.4			
Accelerator-related effects	0.4	0.4	0.4			
Theoretical uncertainties	0.4	0.4	0.2			
Total	1.6	1.6	1.2			

Measurement of Γ_{ee} (J/ ψ)

 $\Gamma_{ee}(J/\psi) = 5.550 \pm 0.056 \pm 0.089 \,\mathrm{keV}$

J. High Energ. Phys. (2018) 2018: 119

Agreement in Γ_{ee} (J/ ψ) obtained from hadronic and leptonic decays confirms the assumption, that interference phases are not correlated

Measurement of $\Gamma_{ee} \cdot B_h$ and $\Gamma_{ee} \cdot B_{ee} (J/\psi)$

 $\Gamma_{ee}(J/\psi) \cdot \mathcal{B}_{hadrons}(J/\psi) = 4.884 \pm 0.048 \pm 0.078 \text{ keV}$ $\Gamma_{ee}(J/\psi) \cdot \mathcal{B}_{ee}(J/\psi) = 0.3331 \pm 0.0066 \pm 0.0040 \text{ keV}$ J. High Energ. Phys. (2018) 2018: 119

Determination of $\Gamma(J/\psi)$

Taking into account $\mathcal{B}_{ee}(J/\psi) = (5.971 \pm 0.032)\%$ from PDG :

 $\Gamma = 92.94 \pm 1.83 \, \mathrm{keV}$

$\Gamma_{ee} \cdot B_{\mu\mu}(\psi(2S))$ measurement

Experimental Statistics

Data set Period		$\int L dt$, nb ⁻¹	$\sigma_{\scriptscriptstyle W}$, MeV		
Peak/cont. 1	January 2005	358	1.08		
Peak/cont. 2	Autumn 2005	222	0.99		
Scan 1	Spring 2006	255	0.99		
Peak/cont. 3	Spring 2006	631	0.99		
Peak/cont. 4	Autumn 2006	701	0.99		
Peak/cont. 5	Autumn 2007	1081	1.01		
Scan 2	End 2007	967	1.01		
Scan 3	Summer 2010	379	1.00		
Scan 4	End 2010	2005	0.98		

Total luminosity is about 6.5 pb⁻¹ $4 \times 10^6 \psi$ (2S) mesons Combined fit of e⁺e⁻ and µ⁺µ⁻ events

Main Background Sources

Bg mode	m, %	Efficiency, %	Correction, %
$J/\psi\pi^+\pi^-$	34.49	$0.03 \div 0.09$	$2.29 \div 8.94$
$J/\psi\pi^0\pi^0$	18.16	$0.01 \div 0.02$	$0.38 \div 0.92$
$\gamma \chi_{c0}(1P)$	9.99	< 0.01	$0.00 \div 0.05$
$\gamma \chi_{c1}(1P)$	9.55	$0.03 \div 0.03$	$0.47 \div 0.92$
$\gamma \chi_{c2}(1P)$	9.11	$0.02 \div 0.03$	$0.44 \div 0.69$
$J/\psi\eta$	3.36	$0.02 \div 0.05$	$0.17 \div 0.46$
e+e-	0.79	< 0.01	< 0.01
$\eta_c \gamma$	0.34	< 0.01	< 0.01
$ au^+ au^-$	0.31	$0.05 \div 0.08$	$0.05 \div 0.07$
$J/\psi\pi^0$	0.13	$0.10 \div 0.15$	$0.03 \div 0.05$
$par{p}$	0.03	$0.01 \div 0.03$	< 0.01

Systematic uncertainties for Γ_{ee} ·B_{µµ}(ψ (2S))

Systematic uncertainty source		p/c 1	p/c 2	sc. 1	p/c 3	p/c 4	p/c 5	sc. 2	sc. 3	sc. 4	$\sigma_{ m syst}^{ m corr}$
1	C. m. energy distribution	1.9	2.7	1.1	2.9	2.2	2.6	1.1	2.9	1.7	0
2	Fixed values of $M_{\psi(2S)}$, $\Gamma_{\psi(2S)}$	0.7	0.6	0.1	0.3	0.7	0.7	0.5	0.2	0.9	0.1
3	Energy measurement	3.1	0.6	< 0.1	1.7	0.3	0.5	0.2	3.8	2.7	< 0.1
4	Bhabha simulation	1.4	1.4	2.2	1.7	1.1	2.1	1.6	2.6	0.9	0.9
5	$\mu^+\mu^-$ scattering simulation	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.3	0.3	0.2
6	Collinearity cuts	0.8	2.8	2.4	0.8	2.1	1.4	1.5	5.4	1.6	0.8
7	e^+e^- polar angle range	1.1	2.0	1.8	1.0	1.0	1.2	1.6	2.1	1.3	1.0
8	Charge determination	0.6	0.3	0.8	0.6	0.2	1.9	0.1	1.0	0.4	0.1
9	Detector asymmetry	0.9	0.2	0.5	0.9	0.1	0.1	0.2	0.4	0.2	0.1
10	Extra energy deposit cut	1.4	1.2	2.2	0.5	1.0	0.6	2.2	1.7	1.6	0.5
11	Muon system cut	2.5	2.7	2.2	0.6	0.3	0.5	0.6	0.7	< 0.1	0
12	ABG thresholds	0.3	0.7	0.5	0.1	0.3	_	—	—	_	0.1
13	Calo trigger thresholds	0.1	0.1	0.2	0.1	< 0.1	0.4	0.5	0.4	0.2	< 0.1
14	RND trigger application	0.2	0.1	< 0.1	< 0.1	< 0.1	0.3	0.1	0.9	0.3	< 0.1
15	FSR accounting	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3
16	e^+e^- events θ binning	0.6	0.2	0.6	0.5	0.5	0.3	0.1	0.4	0.3	0.1
17	ToF measurement efficiency	1.9	2.5	1.5	1.2	0.8	0.9	2.8	2.7	2.3	0.8
18	Trigger efficiency	0.9	< 0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.1	< 0.1
19	Theoretical accuracy	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sum in quadrature		5.7	6.2	5.4	4.4	3.7	4.5	4.7	8.7	4.9	1.9

$\Gamma_{ee} \cdot B_{\mu\mu}(\psi(2S))$ measurement

World average taking Γ_{ee} and $B_{\mu\mu}(\psi(2S))$ from PDG: $\Gamma_{ee} \cdot B_{\mu\mu} = 18.5 \pm 2.1 \text{ eV}$

Γ_{ee} (ψ (2S)) measurement

- With lepton universality and KEDR result on hadronic channel
 - $\Gamma_{ee} \cdot \mathcal{B}_{hadrons} = 2.233 \pm 0.015 \pm 0.042 \text{ keV}$ [Phys. Lett. B, 711 (2012), p. 280]

 $\Gamma_{ee} = 2.279 \pm 0.015 \pm 0.042 \text{ keV}$

• Summing up hadronic and 3 leptonic channels from KEDR: $\Gamma_{ee} \cdot \mathcal{B}_{ee} = 21.2 \pm 0.7 \pm 1.2 \text{ eV}$ [Phys. Lett. B V. 781 (2018) pp. 174] $\Gamma_{ee} \cdot \mathcal{B}_{\tau\tau} = 9.0 \pm 2.6 \text{ eV}$ [JETP Lett., 85 (2007), p. 347]

 $\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.042 \text{ keV}$

Summary

- KEDR performed new precise measurements of J/ψ and $\psi(2S)$ leptonic widths:
- J/ ψ leptonic width was measured in processes $e^+e^- \rightarrow hadrons$ and $e^+e^- \rightarrow e^+e^-$ with accuracy less than 2%.
- $\psi(2S)$ leptonic width was obtained in process $e^+e^- \rightarrow \mu^+\mu^-$ process with the world best accuracy about 3%.