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Introduction

It is well known how to calculate polarization of a �nal electron in
framework of QFT, see e.g. textbook Quantum Electrodynamics of
Berestetskii, Pitaevskii and Lifshitz.

If we are interested in polarization of intermediate fermion, �rst of all
we need to give an accurate de�nition for this value. However, the
concept of polarization in intermediate state is used for a long time in
particle physics. One can recall the account of polarization in the
method of equivalent photons (V. M. Budnev, I. F. Ginzburg, G. V.
Meledin and V. G. Serbo, Phys. Rep. 15, 181 (1975)).

Another example � experimental and theoretical activity concerning
of polarization of t-quark produced in hadron collisions, see e.g.
review W. Bernreuther and P. Uwer, Nucl. Part. Phys. Proc. 261-262,
414 (2015). Note that in the case of t-quark the naive de�nition for
polarization is used in analogy with on-mass-shell particle.

In method of equivalent electrons (V. N. Baier, E. A. Kuraev, V. S.
Fadin and V. A. Khoze, Phys. Rep. 78, 293 (1981)) polarization was
not taken into account.
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Polarization of �nal electron � standard approach

Let electron from initial state with momentum p1µ and polarization
vector s1µ is turned into �nal state with p2µ and s2µ (polarization
selected by a detector)

p1, s1 p2, s2
Γ

Matrix element
M = ū2(p2, s2)Γu1(p1, s1).

Square of matrix element

|M |2 = Sp
(
u2ū2Γu1ū1Γ̃

)
= A+Bµs

µ
2 = A

(
1 +

Bµ
A
sµ2

)
, Γ̃ = γ0Γ†γ0.

(1)
Here we wrote terms dependent and independent on s2. Since
(s2p2) = 0, only transverse part of vector Bµ remains

B⊥µ =
(
gµν −

p2µp2ν
m2

)
·Bν .



Polarization of �nal electron � standard approach

The matrix element square (1) is in fact projection of the scattered

electron density matrix (its spin part is de�ned by the vector s
(f)
µ )

onto the detector density matrix ρ′. Thus comparison of (1) with

Sp(ρ′ρ) = Sp
(m+ p̂2

2m
· 1 + γ5ŝ2

2
· 1 + γ5ŝ(f)

2

)
=

1

2

(
1−

(
s2s

(f)
))

(2)

gives the �nal electron polarization s
(f)
µ as such:

s(f)µ = −
B⊥µ
A
. (3)

Let us introduce short notations for �nal state projectors

Λ±2 = Λ±m(n2) =
1

2

(
1± n̂2

)
, n̂2 =

p̂2
m
, n2

2 = 1,

Σ2 = Σ0(s2) =
1

2

(
1 + γ5ŝ2

)
, s22 = −1, (s2n2) = 0

(4)

and similarly for initial state.



Polarization of �nal electron � standard approach

The matrix element square in these notations is proportial to

|M |2 ∼ Sp
(
Λ+
2 Σ2ΓΛ+

1 Σ1Γ̃
)

= Sp
(
Σ2X

)
= Sp

(1

2
(1 + γ5ŝ2)X

)
. (5)

Here we have introduced matrix, which is used below

X = Λ+
2 ΓΛ+

1 Σ1Γ̃Λ+
2 . (6)

The coe�cients A and Bµ in (1) are calculated like

A =
1

2
Sp
(
X
)
, Bµ =

1

2
Sp
(
γ5γµX

)
, (7)

and the orthogonality property Bµp
µ
2 = 0 is seen from it.



Polarization of �nal electron � standard approach

Let us �nd the decomposition of the matrix X in γ-matrix basis.
Simple calculations show that all coe�cients are easily expressed by
means of p2, A, Bµ

X =
1

2
(1 + n̂2)

(
A− γ5B̂

)
=
A

2
(1 + n̂2)

(
1− γ5B̂/A

)
. (8)

Recall that s
(f)
µ = −Bµ/A is �nal electron polarization.



The search for complete polarization axis of bispinor

After scattering, described by the amplitude (4) we have a new state

u(p1, s1)→ Λ+
2 Γu(p1, s1) = Λ+

2 ΓΛ+
1 Σ1u(p1, s1). (9)

Let us consider the problem of search for complete polarization axis
zµ of bispinor of scattered electron

γ5ẑ · Λ+
2 Γu1 = Λ+

2 Γu1, (zn2) = 0. (10)

We know in advance that this problem has a solution. Let us rewrite
the equation in equivalent form

1 + γ5ẑ

2
· Λ+

2 Γu1 = Λ+
2 Γu1. (11)



Equivalence of two problems

Let us show that the complete polarization axis z coincides with s(f).
Start from the problem

1 + γ5ẑ

2
· Λ+

2 Γu1 = Λ+
2 Γu1. (12)

If we take Hermitian adjoint of this equation

ū1Γ̃Λ+
2 ·

1 + γ5ẑ

2
= ū1Γ̃Λ+

2 . (13)

Multiplying both equations by each other and substituting the density
matrix of initial electron u1ū1 one gets the matrix relation

1 + γ5ẑ

2
·
(

Λ+
2 ΓΛ+

1 Σ1Γ̃Λ+
2

)
· 1 + γ5ẑ

2
=
(

Λ+
2 ΓΛ+

1 Σ1Γ̃Λ+
2

)
≡ X. (14)

This relation can be transformed into equation connecting the

complete polarization axis zµ and �nal electron polarization s
(f)
µ .



Equivalence of two problems

We see that the matrix X satis�es the equations

(1− γ5ẑ) ·X = X · (1− γ5ẑ) = 0. (15)

If to use for X the expression (8) found above we obtain two equations

(1 + n̂2)(1−γ5ẑ)(1 +γ5ŝ(f)) = (1 + n̂2)(1 +γ5ŝ(f))(1−γ5ẑ) = 0. (16)

Let us multiply the arisen spin matrices

(1− γ5ẑ)(1 + γ5ŝ(f)) = 1 + (zs(f)) + γ5(ŝ(f) − ẑ) + σµνzµs
(f)
ν = 0,

(1 + γ5ŝ(f))(1− γ5ẑ) = 1 + (zs(f)) + γ5(ŝ(f) − ẑ)− σµνzµs(f)ν = 0.

It immediately follows that these two vectors coincide s(f) = z.

These two problems are equivalent, but in the problem of looking for
the axis of complete polarization the amplitude is used instead of its
square. This makes possible to apply the same method for calculation
of fermion polarization both for �nal and intermediate states.



Electron scattering in an external �eld

As a simple example let us consider scattering of electron in an
external �eld.

p1, s1 p2, s2
Γ

The vertex factor Γ contains Fourier transform of the external �eld
and corresponding γ-matrix.
The problem of looking for axis (35) can be rewritten as

1 + γ5ẑ

2
· Λ+

2 ΓΛ+
1 Σ1χ = Λ+

2 ΓΛ+
1 Σ1χ, (17)

where χ is an arbitrary bispinor. The found equivalence s(f) = z tells
that vector z does not depend on bispinor χ.



Electron scattering in an external �eld

So one cat rewrite the problem as matrix one

1 + γ5ẑ

2
· Λ+

2 ΓΛ+
1 Σ1 = Λ+

2 ΓΛ+
1 Σ1. (18)

and it gives convenient method to look for vector z with use of
γ-matrix basis. We checked that for external �elds of di�erent kinds
(S, P , V , A) the solution z of the problem (18) coincides s(f) (for
de�nite polarization of initial fermion, s21 = −1).

For vector vertex Γ = γµAµ(q) we obtain

zµ = s1µ − a1p1µ − a2p2µ − a3Aµ,

a1 = −a2 =
(p2s1)(AA)− 2(p2A)(s1A)

D
,

a3 = 2
(p1p2)(s1A)− (p1A)(p2s1)− (s1A)m2

D
,

D = (p1p2)(AA)− 2(p1A)(p2A)− (AA)m2.

(19)



Spectral representation of propagator

We want to apply the problem of looking for complete polarization
axis (35) to the case of fermion in an intermediate state.
To construct SR one needs to solve the eigenvalue problem for inverse
propagator.

SΠ = λΠ. (20)

Having found eigenvalues λi and eigenprojectors Πi

ΠiΠk = δikΠi, i, k = 1, 2, (21)

we can construct the spectral representation of inverse propagator

S(p) = λ1Π1 + λ2Π2. (22)

If the system of projectors is complete, then this expression can be
easily reversed and propagator looks like this:

G(p) =
1

λ1
Π1 +

1

λ2
Π2, (23)

i.e. propagator poles are zeroes of eigenvalues λi.



Bare propagator case

The eigenprojectors Πi for a bare propagator are the known o�-shell
projector operators Λ±W

Λ±W =
1

2

(
1± p̂

W

)
, p2 = W 2, (24)

where W is center-of-mass energy. As a result the bare propagator

G0(p) =
1

p̂−m0
=

1

W −m0
Λ+
W +

1

−W −m0
Λ−W (25)

looks as a sum of poles with positive and negative energies. It is
necessary to stress that we have covariant separation of poles
1/(W ±m0). Eigenvalues are

λ1 = W −m0, λ2 = −W −m0



Dressed propagator case

With account of interaction

S(p) = p̂−m0 − Σ(p). (26)

SR looks di�erently depending on interaction.

If theory conserves parity, then Σ(p) contains unit matrix and p̂

Σ(p) = A(p2) + p̂B(p2) = Σ+(W )Λ+
W + Σ−(W )Λ−W , (27)

where Σ±(W ) = A(W 2)±WB(W 2). In this case

G(p) =
1

W −m0 − Σ+(W )
Λ+
W +

1

−W −m0 − Σ−(W )
Λ−W . (28)

In theory with γ5 the self-energy also has γ5 terms

Σ(p) = A(p2) + p̂B(p2) + γ5C(p2) + p̂γ5D(p2), (29)

and eigenprojectors Πi do not coincide with Λ±W .



Dressed propagator in theory with parity violation

In case of parity violation the eigenprojectors:

Π1,2(p) =
1

2

(
1± n̂τ

)
, n̂ =

p̂

W
,

τ =
1

R

(
1−B − γ5D − n̂γ5 C

W

)
,

R =
√

(1−B)2 −D2 + C2/W 2,

(30)

and eigenvalues λi(W ) are

λ1,2(W ) = −m0 −A(W 2)±WR(W 2). (31)



Dressed propagator and spin projectors

An essential aspect � the existence of spin projectors commuting with
propagator. Note, that the standard spin projectors

Σ0(s) =
1 + γ5ŝ

2
, s2 = −1, (sp) = 0, (32)

cease to commute with propagator in the presence of γ5 in a vertex.
Nevertheless, there exist the generalized spin projectors (Kaloshin,
Lomov (2015)) having all desired properties.
�Under observation� of the energy eigenprojector Πi(p) the
generalized spin projectors take simple form

Πi(p)Σ(s) = Πi(p)
1

2

(
1 + γ5ŝn̂

)
, nµ = pµ/W. (33)

So, in theory with parity violation

Σ0(s) =
1

2
(1 + γ5ŝ) ⇒ Σ(s) =

1

2
(1 + γ5ŝn̂) (34)



Axis of complete polarization for virtual fermion

The problem of looking for complete polarization axis of bispinor

1 + γ5ẑ

2
· Λ+

2 Γu1 = Λ+
2 Γu1. (35)

can be easily extended for fermion in intermediate state.
Look again at free propagator

G0(p) =
1

p̂−m
=

1

(W −m)
Λ+
W +

1

−(W +m)
Λ−W . (36)

One needs only to change projector Λ+
2 in (35) to one of o�-shell

projectors Λ±W (p2) = (1± p̂2/W )/2, p22 = W 2. The problem is turned
into:

1

2
(1 + γ5ẑ±) · Λ±W (p2)Γu1 = Λ±W (p2)Γu1, (z±p2) = 0, (37)

and such problem also has solution: there always exists a vector z±µ ,
such as (z±p2) = 0, (z±)2 = −1.



Axis of complete polarization for virtual fermion

The aforesaid is also true for dressed propagator in theory with γ5.

Let us write down the problem of looking for complete polarization
axis for the dressed energy and spin projectors:

Σ(z±) ·Π±(p2)ΓΛ+
1 Σ1u1 = Π±(p2)ΓΛ+

1 Σ1u1, (z±p2) = 0. (38)

Properties of the problem are the same, but here the �dressed�
projectors take part.



Polarization of fermion in an intermediate state

The spectral representation of propagator allows to give an accurate
de�nition of fermion polarization in an intermediate state.
Consider some process with intermediate fermion

p1, s1

p

G(p) p2, s2

Γ1 Γ2

The corresponding amplitude

M = ū2(p2, s2)Γ1G(p)Γ2u1(p1, s1). (39)

For the case of bare propagator or theory without γ5 the fermion
propagator in the intermediate state has form

G(p) =
1

λ1
Λ+
W +

1

λ2
Λ−W , Λ± =

1

2

(
1 +

p̂

W

)
(40)

where Λ±W are o�-shell energy projectors.



Polarization of fermion in an intermediate state

If to recall the problem of looking for complete polarization axis
involving Λ±W (37), the propagator in the amplitude (39) can be
rewritten as following

G =
1

λ1
Σ0(z+)Λ+

W +
1

λ2
Σ0(z−)Λ−W . (41)

It gives a correct de�nition for polarization of fermion in an
intermediate state.



Polarization of fermion in an intermediate state

What if there is γ5 in vertex? In this case dressed fermion propagator
in intermediate state may be represented as

G(p) =
1

λ1
Π1(p) +

1

λ2
Π2(p), (42)

where Π1,2(p) are the energy projectors (30). Using the problem (38)
one can see that the dressed propagator inside the diagram acquires
spin projectors

G→ G̃ =
1

λ1
· (1 + γ5ẑ1n̂)

2
Π1(p)+

1

λ2
· (1 + γ5ẑ2n̂)

2
Π2(p), (z±)2 = −1.

(43)
It should be pointed out that the dressed energy projectors Πi(p)
presented here contain self-energy contributions and should be
renormalized.



Renormalization (stable fermion)

Simplest method � to use On-Mass-Shell (OMS) scheme.
Dressed inverse propagator (CP is conserved)

S = p̂−m− Σr(p), Σr(p) = p̂Br(p2) + p̂γ5Dr(p2)

Recall the o�-shell eigenprojectors (n̂ = p̂/W )

Πr
1,2(p) =

1

2

(
1± n̂τ

)
, τ = (1−Br − γ5Dr)/R,

R =
√

(1−Br)2 − (Dr)2,

(44)

and eigenvalues λri (W )

λr1,2(W ) = −m−Ar ±WR(W 2). (45)



Renormalization (stable fermion)

Renormalized loops (Imaginary part=0 )

Ar = mκ,
Br = B̃(W 2)− κ
Dr = D̃(W 2).

Notations: D̃(W 2) ≡ D(W 2)−D(m2), κ = 2m2B′(m2)
It leads to simple properties of eigenvalues and eigenprojectors

λr1(m) = 0,

(λr1)′(m) = 1,

Π1(W = m) =
1

2
(1 +

p̂

m
)

and similarly for λ2, Π2 at W = −m.



Renormalization (unstable fermion)

If loop contributions have imaginary part at W = m, one can use
GOMS scheme.
Approximate form of eigenvalue in vicinity of W = m

λ1 = W −m+ i
Γ(W )

2
+O(g2(W −m)) +O(g4)

and eigenprogectors

Π1,2 =
1

2

(
1 + n̂τ

)
(46)

τ(W 2) = 1 + i
Γ(W )

W
γ5 +O(g2(W 2 −m2)) +O(g4) (47)

In matrix density generalized spin projectors may be written in two
equivalent forms

Σ(s) =
1

2

(
1 + γ5ŝτ

)
or

1

2

(
1 + γ5ŝn̂

)



About t-quatk resonance curve

We will write down an approximate expression

G(p) =
1

W −m+ iΓ(W )/2
·Π1(p) · Σ(z1) + (negative energy pole)

Modi�ed energy and spin projectors

Π1(p) =
1

2

[
1 + n̂(1 + i

Γ(W )

W
γ5)

]

Σ(z1) =
1

2

[
1 + γ5ẑ1(1 + i

Γ(W )

W
γ5)

]
Notations:

W =
√
p2, nµ = pµ/W

zµ1 pµ = 0, zµ1 z1 µ = −1



Summary

We suggested to reformulate calculation of polarization of �nal
electron as a problem of looking for the complete polarization axis of
a produced state. As a result, one can use the same approach for
fermion in intermediate state, if to write propagator in form of
spectral representation.

These two poins together:
(i) problem of looking for the complete polarization axis and
(ii) spectral representation of fermion propagator
allow to give a correct de�nition for polarization of intermediate
fermion.

Most interesting is the case of fermion resonance in theory with
P-parity violation. Corresponding the energy and spin projection
operators are modi�ed in theory with γ5 � we found their form.

The obtained projectors are used to give the most accurate
parametrization of t-quark resonance curve including for its o�-shell
polarization.
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