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Motivation

Cosmology tell us that 95% of matter is not
described in text-books yet. Dark Matter
surrounds us! Where it is ?

Two search strategies
1. High energy physics to excite heavy degrees
of freedom. No any evidence till now.
2. Low energy physics to produce Rare
processes in view of huge statistics.

There are some rough edges of SM.
Anomalous magnetic moment of the muon
(g − 2)µ is most famous and stable example



Motivation

Dirac Equation Predicts for free point-like spin 1
2

charged particle:

i~
∂ψ

∂t
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S
)
·
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]
ψ

g = 2, a = (g − 2)/2 = 0 (no anomaly at tree
level)
a becomes nonzero due to interactions resulting
in fermion substructure



Motivation. One loop QED radiative correction
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γ
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Γµ = eγµ + a
ie
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σµνqν

ae =
α

2π
= 0.001162, 1

aexpe = 0.001145± 0.00004, 2

1J. S. Schwinger, Phys. Rev. 73 (1948) 416.
2H. M. Foley and P. Kusch, Phys. Rev. 72, 1256 (1947).



Motivation. One loop QED radiative correction



Anomalous magnetic momentum of electron.

1. To measurable level ae arises entirely from virtual
electrons and photons

aHarvard
e = 1 159 652 180.73 (0.28)× 10−12 [0.24 ppb].3

2. In standard model

ae =
{
aQED
e + aweake + ahadre

}SM
, aQED

e =
∞∑

n=1

(α
π

)n
a(2n)e ,

3. This result leads to the determination of the fine
structure constant α with the extraordinary precision 4

α−1 = 137.0359991570(29)(27)(18)(331)

where uncertainties are from the eighth-order, tenth-order,
and hadronic and EW terms, and the measurement of ae.

3D. Hanneke, S. Fogwell and G. Gabrielse, PRL 100 , 120801 (2008).
4T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, PRD 91, 033006 (2015).



Motivation. Anomalous magnetic momentum of muon.

1. Anomalous magnetic momentum of muon aµ = (g − 2)µ
is measured in experiment E821 (BNL) with high precision5

aexpµ = 11 659 209.1(6.3)× 10−10

2. The nonzero lepton AMMs are induced by radiative
corrections. In the SM are induced by QED, weak and
strong (hadronic) interactions.

aµ =
{
aQED
µ + aweakµ + ahadrµ

}SM
+ ???

3. Tenth-order QED contribution6 to aµ

aQED
µ = 11 658 471.8951 (0.0080)× 10−10

4. Weak contribution7

aweakµ = 15.36 (0.1)× 10−10

5G.W.Bennett,et al.PRD73,072003(2006); P.J.Mohr,et al.RMP84,1527(2012).
6T.Aoyama, M.Hayakawa, T.Kinoshita, M.Nio, PRL 109, 111807 (2012).
7A.Czarnecki, W.J.Marciano, A.Vainshtein, PRD67, 073006 (2003);

C.Gnendiger, D.Stockinger and H.Stockinger-Kim, PRD88, 053005 (2013)



Motivation. Anomalous magnetic momentum. HVP

5. Strong contribution separated into three terms

ahadrµ = aHVP,LO
µ + (aHVP,NLO

µ + aHVP,NNLO
µ + ..) + aHLbL

µ

I Contribution of hadron vacuum polarization can be
extracted from experimental data for process e+e− →
in hadrons (or hadronic τ -lepton decays)

aHVP,LO
µ =

{
693.1 (3.4)× 10−10, 8

693.26 (2.46)× 10−10. 9

8M.Davier, A.Hoecker, B.Malaescu, Z.Zhang, EPJC 77 (2017) 827
9A. Keshavarzi, D. Nomura, T. Teubner PRD 97 (2018) 114025



Motivation. Anomalous magnetic momentum. HLbL

6. Higher orders hadronic contribution to HVP 10, 11

aHVP,NLO
µ = −9.82 (0.04)× 10−10,

aHVP,NNLO
µ = 1.24(0.01)× 10−10.

7. The ”Glasgow consensus” value for the hadronic
light-by-light contribution 12

aHLbL
µ (Glasgow) = 10.5 (2.6)× 10−10

10K.Hagiwara,R.Liao,A.D.Martin,D.Nomura,T.Teubner, JPG 38, 085003 (2011)
11A. Kurz, T. Liu, P. Marquard and M. Steinhauser, PLB 734, 144 (2014).
12J.Prades, E.de Rafael, A.Vainshtein, in Advanced series on directions in high

energy physics, Vol. 20 [arXiv:0901.0306 [hep-ph]].



Motivation. Anomalous magnetic momentum.

8. Combining all SM contributions one obtains

aSM,8µ = 116 591 82.3(4.3)× 10−10

aSM,9µ = 116 591 82.04(3.56)× 10−10

aSM,
13

µ = 116 591 78.3(3.5)× 10−10

9. The resulting difference between the experimental
result and the full SM prediction are

aBNL
µ − aSM,8µ = 26.8 (7.6)× 10−10(3.5σ),

aBNL
µ − aSM,9µ = 27.06 (7.26)× 10−10(3.7σ).

aBNL
µ − aSM,13µ = 30.6 (7.2)× 10−10(4.3σ).

13F. Jegerlehner, Springer Tracts Mod. Phys. 274 (2017) 1



Motivation. Anomalous magnetic momentum. HLbL

The SM theoretical error is dominated by the hadronic
contributions. Theoretical predictions of HVP and HLbL
contributions to aµ should be of the same level or better
than the precision of planed experiments.
LbL scattering amplitude is a complicated object. It is a
sum of different diagrams, the quark loop, the meson
exchanges, the meson loops and the iterations of these
processes. However, there is hierarchy connected to
existence of two small parameters: the inverse number of
colors 1/Nc and the ratio of the characteristic internal
momentum to the chiral symmetry parameter
mµ/(4πfπ) ∼ 0.1.



Lagrangian of nonlocal model

The Lagrangian of the nonlocal model has the form

L = Lfree + L4q + LtH
Lfree = q̄(x)(i∂̂ −mc)q(x)

mc – current quark mass matrix with diagonal elements
mu
c = md

c , m
s
c

L4q =
G

2
[JaS(x)JaS(x) + JaP (x)JaP (x)]

LtH = −H
4
Tabc[J

a
S(x)J bS(x)J cS(x)− 3JaP (x)J bP (x)J cP (x)]

Nonlocal quark currents are

JaM(x) =

∫
d4x1d

4x2 f(x1)f(x2) q̄(x− x1) ΓaMq(x+ x2),

where M = S, P and ΓaS = λa, ΓP = iγ5λa, and f(x) is a
form factor reflecting the nonlocal properties of the QCD
vacuum.



Lagrangian

The model can be bosonized using the stationary phase
approximation which leads to the system of gap equations
for the dynamical quark masses md,i (i = u, d, s)

md,u +GSu +
H

2
SuSs = 0,

md,s +GSs +
H

2
S2
u = 0,

Si = −8Nc

∫
d4Ek

(2π)4
f 2(k2)mi(k

2)

Di(k2)
,

where mi(k
2) = mc,i +md,if

2(k2) is the dynamical quark
mass, Di(k

2) = k2 +m2
i (k

2), f(k2) is the nonlocal form
factor in the momentum representation.



T matrix

= + + +...

The vertex functions and the meson masses can be found
from the Bethe-Salpeter equation. For the separable
interaction the quark-antiquark scattering matrix in
pseudoscalar channel becomes

T = T̂(p2)δ4 (p1 + p2 − (p3 + p4))
4∏

i=1

f(p2i ),

T̂(p2) = iγ5λk

(
1

−G−1 + Π(p2)

)

kl

iγ5λl,

where pi are the momenta of external quark lines, G and
Π(p2) are the corresponding matrices of the four-quark
coupling constants and the polarization operators of
pseudoscalar mesons (p = p1 + p2 = p3 + p4).



T matrix

= + + +...

The meson masses can be found from the zeros of
determinant det(G−1 −Π(−M2)) = 0. The T̂-matrix for
the system of mesons in each neutral channel can be
expressed as

T̂ch(P
2) =

∑

Mch

V Mch
(P 2)⊗ VMch

(P 2)

−(P 2 + M2
Mch

)
,

where MM are the meson masses, VM(P 2) are the vertex

functions
(
V M(p2) = γ0V †M(P 2)γ0

)
. The sum is over full

set of light mesons: (MPS = π0, η, η′) in the pseudoscalar
channel and (MS = a0(980), f0(980), σ) in the scalar one.



External fields

The gauge-invariant interactions with external photon field
can be introduced with Schwinger phase factor

q(y)→ Q(x, y) = Pexp



i

y∫

x

dzµV a
µ (z)T a



 q(y),

apart from kinetic term the additional terms in nonlocal
interations are generated

JI(x) =

∫
d4x1d

4x2 f(x1)f(x2) Q̄(x− x1, x) ΓI Q(x, x+ x2)



External fields

The gauge-invariant interactions with external photon field
can be introduced with Schwinger phase factor

q(y)→ Q(x, y) = Pexp



i

y∫

x

dzµV a
µ (z)T a



 q(y),

apart from kinetic term the additional terms in nonlocal
interations are generated

JI(x) =

∫
d4x1d

4x2 f(x1)f(x2) Q̄(x− x1, x) ΓI Q(x, x+ x2)

The following equations are used for obtaining of nonlocal
vertices

∂

∂yµ

y∫

x

dzν Fν(z) = Fµ(y), δ(4) (x− y)

y∫

x

dzν Fν(z) = 0.



Nonlocal vertices

As a result the nonlocal vertices with arbitrary number of photon
fields are generated

!

q1(µ)

k k′

q1(µ)q2(ν)

k k′

q1(µ)q2(ν)q3(λ)

k k′

q1(µ)q2(ν)q3(λ)q4(σ)

k k′

q1(µ)

k k′

q1(µ)

k k′



Nc counting rules.

In order to have correspondence with QCD the quark mass
should scale as N0

c for large number of colors

md = GNc · 8
∫

d4Ek

(2π)4
f 2(k)

m(k)

k2 +m2(k)

This means that four-quark coupling constant should scales
as G ∼ 1/Nc. As a result meson propagator leads to 1/Nc

suppression of diagrams

DM
p =

1

−G−1 + ΠM
p

→ 1

Nc

,



Light-by-light hadronic contribution to the muon AMM

Muon AMM can be extracted by using the projection

aHLbL
µ =

1

48mµ

Tr ((p̂+mµ)[γρ, γσ](p̂+mµ)Πρσ(p, p)) ,

Πρσ(p′, p) = −ie6
∫

d4q1
(2π)4

∫
d4q2
(2π)4

1

q21q
2
2(q1 + q2 − k)2

×

× γµ p̂′ − q̂1 +mµ

(p′ − q1)2 −m2
µ

γν
p̂− q̂1 − q̂2 +mµ

(p− q1 − q2)2 −m2
µ

γλ×

× ∂

∂kρ
Πµνλσ(q1, q2, k − q1 − q2),

mµ is the muon mass, kµ = (p′ − p)µ, static limit kµ → 0.



Four-rank polarization tensor

To the leading 1/Nc order four-rank polarization tensor
Πµνλσ can be represented in the form 14

= + +

+ + + ... =

= + + +

14The nonlocal multi-photon vertices are not shown for simplicity.



HLbL resonance contribution to the muon AMM

∂

∂kρ
Πµνλσ(q1, q2, k − q1 − q2) =

i
∆µν(q1 + q2, q1, q2)

(q1 + q2)2 −M2

∂

∂kρ
∆λσ(q1 + q2,−q1 − q2, k)

+ i
∆νλ(−q1, q2,−q1 − q2)

q21 −M2

∂

∂kρ
∆µσ(−q1, q1, k)

+ i
∆µλ(−q2, q1,−q1 − q2)

q22 −M2

∂

∂kρ
∆νσ(−q2, q2, k) +O(k)



Meson–photon–photon transition amplitude

+ + +

+ +



Two-photon–pseudoscalar(scalar) meson. I

Triangular diagram with external pseudoscalar (scalar)
meson and two photon legs with arbitrary virtualities can
be written as

A
(
γ∗(q1,ε1)γ

∗
(q2,ε2)

→ P ∗(p)
)

= −ie2εµνρσεµ1εν2q
ρ
1q
σ
2 FP ∗γ∗γ∗

(
p2; q21, q

2
2

)
,

A
(
γ∗(q1,µ)γ

∗
(q2,ν)

→ S∗(p)
)

= e2∆µν
S∗γ∗γ∗(q3, q1, q2) =

= e2
[
AS∗γ∗γ∗

(
p2; q21, q

2
2

)
T µνA (q1, q2)

+BS∗γ∗γ∗(p2; q21, q
2
2)T µνB (q1, q2)

]
,

T µνA (q1, q2) = (gµν(q1 · q2)− qν1q
µ
2 )

T µνB (q1, q2) =
(
q21q

µ
2 − (q1 · q2)qµ1

) (
q22q

ν
1 − (q1 · q2)qν2

)
,



Pion FF

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 2.0 4.0 6.0 8.0 10.0

F
πγ

∗ γ∗ (
 −

M
π2 ;Q

2 ,0
)

Q2[GeV2]

VMD

NxQM

Cello

Belle

BaBar

CLEO



η FF
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η′ FF
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HLbL contribution to the muon AMM

Model aHLbL
µ Reference

LMD+V 8.0(1.2) (Knecht [1])
ENJL 8.3(3.2) (Bijnens [2])
Mesons+ π,quark loops+ resc. 8.7(1.3) (Danilkin [12])
VMD, HLS 8.96(1.54) (Hayakawa [3])
Mesons+ π,K,quark loops 10.34(2.88) (Jegerlehner [11])
Glasgow consensus 10.5(2.6) (Prades [4] )
LENJL 10.77(1.68) (Bartos [5])
oLMDV 11.6(4.0) (Nyffeler [6])
(LMD+V)′ 13.6(2.5) (Melnikov [7])
Q-box 14.05 (Pivovarov [8])
CχQM 15.0(0.3) (Greynat [9])
Our work 16.8(1.25)
DS 18.8(0.4) (Goecke [10])

Table: Model estimates of the HLbL contribution to aµ obtained in
different works. All numbers are given in 10−10.



Lagrangian in presence of vector–axial-vector
interaction

The Lagrangian of the nonlocal model has the form

L = Lfree + L4q + LtH+LV,AV ,

LV,AV =
G2

2
[JaV (x)JaV (x) + JaAV (x)JaAV (x)]

Nonlocal quark currents are

JaM(x) =

∫
d4x1d

4x2 f(x1)f(x2) q̄(x− x1) ΓaMq(x+ x2),

where M = V,AV and ΓV = γµλa, ΓAV = γ5γµλa.



Meson-photon-photon interaction vertices (AV I)

T µνα = ερστα

{
A1q

τ
1g

µρgσν + A2q
τ
2g

µρgσν + A3q
ν
1q

ρ
1q
σ
2 g

τµ+

+ A4q
ν
2q

ρ
1q
σ
2 g

τµ + A5q
µ
1 q

ρ
1q
σ
2 g

τν + A6q
µ
2 q

ρ
1q
σ
2 g

τν

}

where Ai ≡ Ai(p2, q21, q22) and due to gauge invariance

−A2 + q21A5 + (q1 · q2)A6 = 0,

−A1 + (q1 · q2)A3 + q22A4 = 0

and by Bose symmetry

A1(p
2, q21, q

2
2) = −A2(p

2, q22, q
2
1)

A3(p
2, q21, q

2
2) = −A6(p

2, q22, q
2
1)

A4(p
2, q21, q

2
2) = −A5(p

2, q22, q
2
1)



Meson-photon-photon interaction vertices (AV II)

Tµνα = ερστα

{
Rµρ(q1, q2)Rνσ(q1, q2) (q1 − q2)τ

(q1 · q2)

m2
A

F
(0)
AV γ∗γ∗(p2, q21 , q

2
2)

+ Rνρ(q1, q2)Qµ1 q
σ
1 q

τ
2

1

m2
A

F
(1)
AV γ∗γ∗(p2, q21 , q

2
2)

+ Rµρ(q1, q2)Qν2q
σ
2 q

τ
1

1

m2
A

F
(1)
AV γ∗γ∗(p2, q22 , q

2
1)

}
,

Rµν(q1, q2) = −gµν +
1

X

{
(q1 · q2) (qµ1 q

ν
2 + qµ2 q

ν
1 )− q21 q

µ
2 q

ν
2 − q22 q

µ
1 q

ν
1

}
,

Qµ1 =

(
qµ1 −

q21
ν
qµ2

)
, Qν2 =

(
qν2 −

q22
ν
qν1

)
,

where X = (q1 · q2)2 − q21q22 and Rµν(q1, q2) is fully transverse tensor,
Qµ1 and Qν2 are transverse with respect to q1 and q2

q1(2),νR
µν(q1, q2) = 0, q1(2),µR

µν(q1, q2) = 0,

q1µQ
µ
1 = 0, q2νQ

ν
2 = 0.



Two-photon-decay width of AV-meson

Axial-vector meson can not decay into two real photons,
according to the Landau–Yang theorem. The coupling of
1++ mesons to two photons is still possible in the case when
one or both photons are virtual. Two-photon “decay”
width defined as

Γ̃γ∗γ∗(AV ) = lim
Q2→0

M2
A

Q2
ΓTS
γγ∗ =

πα2M5
A

12
[F

(1)
AV γ∗γ∗(M2

A, 0, 0)]2

At present we have only few experimental data on form
factor of transition of 1++ meson to two photons
FAV γ∗γ∗(t2, k2, k2). The L3 Collaboration studied the
reaction e+e− → e+e−γ∗γ∗ → e+e−f1(1285)→ e+e−ηπ+π−

and f1(1285) transition form factor for the case when one
of the photons is real and another one is virtual.
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g-2 axial-vector exchange – numerical results

model AV contribution in 10−10

ENJL 0.25± 0.1 [2]
HLS 0.2± 0.1 [3]
MV 2.2± 0.5 [7]

Empirical estimations 0.755± 0.271 [11]
Our work 0.34

In nonlocal model the separate result for contribution of
a1(1260), f1(1285) is 0.67 · 10−11. However, due to decrease
of pion contribution because of ρ− γ and π− a1 mixing one
can estimate axial-vector a1, f1 contribution as 0.34 · 10−11.



Conclusions. I

I Our result decrease difference between experimental
result and theoretical estimations

I Within the nonlocal quark model the main contribution
to the light-by-light process comes from contact and
pion contributions.

I The pseudoscalar meson contributions to muon AMM
are systematically lower then the results obtained in
the other works.

I This is due to full kinematic dependence – off-shell
effects.

I Contact term is large since the quarks in the loop are
dynamical, i.e. at zero virtuality they have constituent
mass but for large momenta their mass become current.
Contact term diverges for zero quark mass. This is
somewhat similar to the result of DSE– BSE
calculations.



Conclusions. II

I The value of axial-vector contribution in nonlocal quark
model have the same order as estimations in the ENJL,
HLS models and empirical estimations.

I No trace of rather big axial-vector contribution as in
Melnikov–Vainshtein work.

I ρ− γ and π − a1 mixing for pseudoscalar contribution
partially decrease axial-vector contribution.

I Result seems stable for the possible extension to
vector–axial-vector sector.



Conclusions. Questions

I The sign of scalar meson contribution is positive while
in some estimations it is negative. In our calculation
the scalar meson mainly influence error bar but not the
main value.

I How relate our model calculations to the dispersive
approach to the hadronic light-by-light contribution to
the muon g-2 (Prof. Gilberto Colangelo talk)?

I Next-to-leading 1/Nc expansion terms can contribute.
Charged pion loop gave negative contribution but there
are a lot of 1/Nc corrections in quark model (e.g.
correction to quark self-energy, dressing of mesons by
two-mesons intermediate state, etc.).



HFS

I The contribution of axial-vector mesons in the nonlocal
model to hyperfine splitting of levels of muonic
hydrogen within the error bar of empirical estimation –
talk by A.E.Dorokhov.
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