The MUonE Project: Theory Progress

> Massimo Passera INFN Padova

International Workshop on e⁺e⁻ collisions from Phi to Psi Budker Institute of Nuclear Physics & Novosibirsk State U. Feb 28 2019

A new approach to a_{μ}^{HLO}

C. Carloni Calame, MP, L. Trentadue, G. Venanzoni PLB 2015 - arXiv:1504.02228

Spacelike proposal for HLO

 At present, the leading hadronic contribution a_μHLO is computed via the timelike formula:

$$a_{\mu}^{\text{HLO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\text{had}}^0(s)$$
$$K(s) = \int_0^1 dx \, \frac{x^2 \, (1-x)}{x^2 + (1-x) \left(s/m_{\mu}^2\right)}$$

Alternatively, exchanging the x and s integrations in a_μ^{HLO}

 $\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of α in the spacelike region. It can be extracted from scattering data!

Spacelike proposal for HLO (2)

F. Jegerlehner, arXiv:1511.04473

Carloni Calame, MP, Trentadue, Venanzoni, PLB 2015

Spacelike proposal for HLO: which experiment?

• $\Delta \alpha_{had}(t)$ can be measured via Bhabha scattering:

• The peak occurs at $x_{peak} = 0.914$, $t_{peak} = -0.108 \text{ GeV}^2 \simeq -(330 \text{ MeV})^2$

Muon-electron scattering: The MUonE Project

Abbiendi, Carloni Calame, Marconi, Matteuzzi, Montagna, Nicrosini, MP, Piccinini, Tenchini, Trentadue, Venanzoni EPJC 2017 - arXiv:1609.08987

- $\Delta \alpha_{had}(t)$ can also be measured via the elastic scattering $\mu e \rightarrow \mu e$.
- We propose to scatter a 150 GeV muon beam, available at CERN's North Area, on a fixed electron target (Beryllium). Modular apparatus: each module has one layer of Beryllium (target) followed by several thin Silicon strip detectors.

• State-of-the-art Si detectors: ~20 μ m hit resolution \rightarrow ~0.02mrad expected angular resolution. ECAL and μ filter at the end for PID.

 a_{μ}^{HLO} via muon-electron scattering

- For a 150 GeV muon beam, the scan region extends up to x=0.932, ie beyond the peak! (the peak is at x=0.914)
- The integrand in the remaining region $x \in [0.932,1]$ accounts for ~13% of the a_{μ}^{HLO} integral. It cannot be reached by our experiment but it can be determined using time-like data & pQCD, and/or lattice QCD results.

- Statistics: With CERN's 150 GeV muon beam M2 (1.3 × 10⁷ µ/s), incident on Be layers (total thickness 60cm), 2 years of data taking (2 × 10⁷ s/yr) → integrated luminosity L_{int} ~ 1.5 × 10⁷ nb⁻¹.
- With this \mathcal{L}_{int} we estimate that we can reach a <u>statistical</u> sensitivity of ~ 0.3% on a_{μ}^{HLO} , ie ~ 20 × 10⁻¹¹.
- Systematics: Systematic effects must be known at ≤ 10ppm.

 Theory: To extract Δα_{had}(t) from this measurement, the ratio of the SM cross sections in the signal and normalisation regions must be known at ≤ 10ppm!

Full set of NLO QED + EW corrections computed & checked.

Alacevich, Chiesa, Montagna, Nicrosini, Piccinini, Carloni Calame, arXiv:1811.06743.

Fully differential fixed order MC @ NLO ready!

See C. Carloni Calame's talk

Pavia Group

- NNLO: Missing MI for both planar and non-planar 2-loop box diagrams computed! Padova Group
- Method of differential equations and Magnus exponential series adopted. Massless electron, full muon mass dependence.

Mastrolia, MP, Primo, Schubert, arXiv:1709.07435 (planar) Di Vita, Laporta, Mastrolia, Primo, Schubert, arXiv:1806.08241 (non-planar)

• Interplay with Dimuon & ttbar production calculations

Bern, Dixon, Ghinculov, hep-ph/0010075 Bonciani, Ferroglia, Gehrmann, Maitre, Studerus, 0806.2301 Bonciani, Ferroglia, Gehrmann, von Manteuffel, Studerus, 1309.445 Lee, Mingulov, 1901.04441

• Muon-electron scattering at NNLO: the hadronic corrections

Fael & MP, arXiv:1901.03106

Theory of µe scattering: NNLO hadronic (2)

- 1. FeynArts + FormCalc + Collier (Fortran). FKS for IR.
- 2. FeynCalc + Package-X (Mathematica). Slicing for IR.
- Π_{had}(t) & R_{had}(z) from Jegerlehner's alphaQEDc17 and Keshavarzi, Nomura, Teubner's VP_KNT_v3_0.

• These corrections are $10^{-4} - 10^{-5} \rightarrow \text{crucial for MUonE!}$

• Hadronic corrections at NNLO with spacelike data (MUonE data!) via the hyperspherical integration method Fael, arXiv:1808.08233

	To R(s)	Not to <i>R</i> (<i>s</i>)
Based on	$\Pi_{ ext{had}}(t < 0)$ & Im $\Pi_{ ext{had}}(s > 0)$	$\Pi_{ m had}(t < 0)$
Data input	timelike <i>R</i> (<i>s</i>)	MUonE
	$\sqrt{s} \in [2m_{\pi}, 11.5 ext{GeV}]$	$t \in [-0.143, 0] \text{ GeV}^2 + \dots$
Th. Assumptions	$\Pi_{\rm had}^{(NLO)}(t) \neq \Pi_{\rm had}^{(NNLO)}(t)$	$\Pi^{(NLO)}_{ m had}(t){=}\Pi^{(NNLO)}_{ m had}(t)$
Class IV integrands	Oscillatory	Smooth
IR "safe"	\wedge	\checkmark
Fortran code	\checkmark	×

• Muon-electron scattering at NNLO: the "leptonic" corrections

Partial cancelations with e⁺e⁻ production corrections.

- NNLO: QED double-virtual matrix elements
 Di Vita, Fael, Glaus, Laporta, Mastrolia, MP, Peraro, Primo, Schubert, Spira, Torres-Bobadilla, ...

 NNLO: QED double real radiation & real-virtual corrections
 Fael, Mastrolia, Ossola, MP, Signer, Ulrich, Torres-Bobadilla, ...

 NNLO: leptonic and hadronic pair production Pavia group, Czyż, ...
 NNLO: hadronic corrections with spacelike data Fael, MP, ...
 NNLO: "Massification", ie how to obtain the leading electron
- NNLO: "Massification", ie how to obtain the leading electron mass terms from the corresponding massless amplitude and virtual soft contribution? Banerjee, Becher, Broggio, Engel, Signer, Ulrich, ...
- Extend the MC to fixed order NNLO Pavia group, Czyż, ...
- Match the NNLO calculations with resummation of the log contributions
- Resummation & experimental cuts: Log(of what?)? How can we assess the higher-order uncertainties?

Still lots of work needed towards our final TH goal!

1st MUonE theory workshop: Padova 2017

Muon-electron scattering: Theory kickoff workshop

4-5 September 2017

https://agenda.infn.it/internalPage.py?pageId=0&confId=13774

The aim of the workshop is to explore the opportunities offered by a recent proposal for a new experiment at CERN to measure the scattering of high-energy muons on atomic electrons of a low-Z target through the process $\mu e \rightarrow \mu e$. The focus will be on the theoretical predictions necessary for this scattering process,

its possible sensitivity to new physics signals, and t tools. This kickoff workshop is intended to stimulate

It is organized and hosted by INFN Padova and the University.

Organizing Committee

Carlo Carloni Calame - INFN Pavia Pierpaolo Mastrolia - U. Padova Guido Montagna - U. Pavia Oreste Nicrosini - INFN Pavia Paride Paradisi - U. Padova Massimo Passera - INFN Padova (Chair) Fulvio Piccinini - INFN Pavia Luca Trentadue - U. Parma

Secretariat

Anna Dalla Vecchia, INFN-Sez. PD +390499677022 ar Elena Pavan, INFN-Sez. PD +390499677155 epavan@

2nd MUonE theory workshop: Mainz 2018

mitp

SCIENTIFIC PROGRAMS

Probing Physics Beyond SM with Precision Ansgar Denner u Würzburg, Stefan Dittmaier u Freiburg, Tilman Plehn u Heidelberg

February 26-March 9, 2018

Bridging the Standard Model to New Physics

Mainz Institute for Theoretical Physics

TOPICAL WORKSHOPS

CL 11

The Evaluation of the Leading Hadronic Contribution to the muon anomalous magnetic moment Massimo Passera INFN Padua, Luca Trentadue U Parma, Carlo Carloni Calame INFN Pavia Graziano Venanzoni INFN Frascati February 19-23, 2018

in Consideration in Discourse

3rd MUonE theory workshop: Zurich 2019

2^{nd} Workstop / Thinkstart: $4^{th} - 7^{th}$ Feb 2019

Theory for muon-electron scattering @ 10ppm Y36 K08, Physik-Institut, University of Zurich

Organized by A. Signer & Y. Ulrich

4th MUonE theory workshop in 2020

Conclusions

MUonE: a proposal for a new experiment at CERN to measure the leading hadronic contribution to the muon g-2 via μe scattering. It is a very challenging experiment! **Positive report from CERN's "Physics Beyond Colliders" Working** Group. Lol to CERN's SPSC planned by 2019. Great theory progress: Fully differential fixed order MC @ NLO ready. NNLO: All missing MI for 2-loop box diagrams computed. NNLO: hadronic & leptonic corrections computed. Lots of theory work still needed towards our final theory goal: a running MC code for the ratio of the SM cross sections in the signal and normalisation regions at ≈ 10ppm!

The End

Backup

Future plans

CERN's Physics Beyond Colliders Working Group Report:
 "The aim of the MUonE proposal... would be an extremely valuable independent determination for the value of (g-2)μ"

A. Dainese et al., CERN-PBC-REPORT-2018-008, arXiv:1901.04482

- **2019**
 - March 24-25: 1st collaboration meeting @ Cern
 - Letter of Intent planned to CERN's SPSC
- **2020-21**
 - Detector design, construction & installation
 - Final feasibility studies with a detector prototype
- **2022-24**
 - 1st run: scaled detector and reduced accuracy

