Searching for dark sector with missing mass technique in fixed target experiments

Venelin Kozhuharov

Sofia University* & LNF–INFN

28.02.2019

* partially supported by BG NSF, DN08-14/14.12.2016 & LNF-SU 70-06-497/07-10-2014

- Motivation
- Technique
- Positron-on-target experiments
- Meson decay in flight

Particle physics

- Standard Model is complete: 2012 LHC Higgs boson
- But unknowns:
 - Matter-antimatter asymmetry
 - Dark Matter
 - Dark Energy
- The Standard Model is a low energy approximation of a more fundamental theory.

But which theory?

 Despite the highest energy reach LHC did not provide any convincing evidence for new degrees of freedom ... yet?

Where to look? How to proceed?

New information on anything that has not been checked so far is extremely valuable!

Why Dark Photon?

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}), \qquad (17)$$

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100$ MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

Hidden sector and Dark Photon

The effective interaction that can be studied is

 $- \quad q_{_f} \rightarrow 0 \text{ for some flavours}$

- Textbook scenario, could address the $(g_{\mu}$ -2) discrepancy, abundance of antimatter in cosmic rays, signals for DM scattering
 - General U'(1) and kinetic mixing with B (A', Z')
 - Universal coupling proportional to the q_{em}
 - Just single additional parameter ϵ

$$L_{mix} = -\frac{\epsilon}{2} F_{\mu\nu}^{QED} F_{dark}^{\mu\nu}$$

- Leptophilic/leptophobic dark photon
 - "Gauging" SM accidental symmetries: (e.g. L μ L τ , B L)
- Related to Dark matter and its interactions

Variety of Dark Photons ...

- Part of the phenomenology of the Dark Photon depends on what we don't know
 - Is it really a mediator between the visible and the hidden world?
 - Is it a manifestation of a Fifth Force?
 - How does it come to couple to SM particles?
 - Mixing with SM gauge boson?
 - Universal versus non-universal couplings?
- And moreover what the hidden world looks like?

Light

Constrained initial process

- Initial state is carefully prepared
 - A' as a product of SM particles decays: π^0 , ρ , η
 - e+e- colliders
 - Annihilation
- Possible A' final states
 - A' \rightarrow SM particles, all states reconstruction
 - Provides significant background suppression
 - A' \rightarrow DM particles
 - Determination of A' properties through missing momentum/energy/ mass

Dark Photon in meson decays

Batell, Pospelov and Ritz, PRD 80, 095024 (2009)

$$\mathcal{B}(\pi^0 \to \gamma A') = 2\varepsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 \mathcal{B}(\pi^0 \to \gamma \gamma)$$

- Identify a solid source of π^0
 - @ colliders: $e^+e^- \rightarrow Y, \rho, \eta, \phi$
 - In target production
 - Background from beam-target interaction
 - Use a cascade process, where π^0 is one of the products
 - $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$, $K^{\pm} \rightarrow \mu^{\pm}\pi^{0}\nu$ (Kµ3)

 $\pi^0 \rightarrow ee\gamma (\pi^{0}D)$

- Br(K[±] $\rightarrow \pi^{\pm}\pi^{0} \rightarrow \pi^{\pm} e^{+}e^{-}\gamma$) = 2.4 x 10⁻³
- Sensitive both to visible and invisible DP, depending on the requested final state

- Positron beam on a thin target
- Positron momentum is determined by the accelerator characteristics
- Missing mass resolution: annihilation point, E_{y} , ϕ_{y}

$$\frac{\sigma(e^+e^- \to U\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} * \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \epsilon^2 * \delta,$$

- Clear 2 body correlation
- Background minimization
 - Best possible resolution on energy/angle measurement
 - Dominant process in e+/e- interactions with matter is bremsstrahlung
 - Photons vetoing
 - Minimize the interaction remnants + vetoing

Cross section enhancement with the approach of the production threshold

Backgrounds

The CERN kaon factory

NA62: $K^{\pm} \rightarrow \pi^{\pm} \forall \forall$

2018

2014

2008

2007

2004

2003

2002

2001

1997

NA62 RK NA48/2 setup

NA48/2 CP violation in K[±] low energy QCD, semileptonic NA48/1 K, rare and hyperon

ΝΑ48 ε'/ε

ΝΑ31 ε'/ε

Kaon @ SPS

SPS

LHC

CERN North Area

NA62 experiment

JINST 12 (2017) P05025

arXiv:1811.08508

Excellent particle veto efficiency

- Main goal: BR(K⁺ $\rightarrow \pi^+\nu\nu$) with 10% precision
 - Collect O(100) signal events \Rightarrow 10¹³ kaon decays
 - Measure $|V_{td}|$ with ~10% accuracy

NA62 experiment

see talk of A. Shaikhiev

- Charged particle tracking:
 - Gigatracker: Si pixel
 - Straw chambers in vacuum
- Charged particle identification
 - KTAG: Differential Cherenkov
 - CHOD & RICH, MUVs for $\pi/\mu/e$

- Hermetic photon veto
 - LAV, LKR, IRC/SAC
 - $\theta_{part} \sim 50 mrad$
- Charged particle veto: CHANTI
 - extra activity in downstream detectors

NA62: extensive search for NP

- Total number of kaons in the fiducial region X*10¹³
- Different searches for light new states: HNL, scalars
- Lepton number violating and Lepton flavour violating channels studies

Positron Annihilation into Dark Matter Experiment

Adv. HEP 2014 (2014) 959802

- Small scale fixed target experiment
 - e⁺ @ Frascati Beam test facility
 - Solid state target
 - Charged particles detectors
 - Calorimeter

- Vacuum: ~2*10⁻⁷ mbar
 - Two major sections: inside and outside the dipole magnet
 - Austenitic steel, thermally treated to reach the desired magnetic permeability

PADME @ BTF

	Electrons	Positrons
Maximum beam energy (E _{beam})[MeV]	750 MeV	550 MeV
Linac energy spread [Dp/p]	0.5%	1%
Typical Charge [nC]	2 nC	0.85 nC
Bunch length [ns]	1.5 – 40 (can reach 200 in 2016)	
Linac Repetition rate	1-50 Hz	1-50 Hz
Typical emittance [mm mrad]	1	~1.5
Beam spot s [mm]	<1 mm	
Beam divergence	1-1.5 mrad	

- BTF line completely dismounted
- Hall and infrastructure refurbished, control room moved
- All the components placed to their new nominal position

Outstanding support from the laboratory!

Active diamond target

Polycrystalline diamonds

- 100 μm thickness:
- 16 × 1 mm strip and X-Y readout in a single detector
- Graphite electrodes using excimer laser (Lecce)
- PADME prototype 20 × 20 mm² produced and tested 2015
- Low noise CSA integrated in the 16 channel chip AMADEUS from IDEAS

Beam intensity measurement with high precision and linearity

Calorimeters

616 BGO crystals, 2.1 x 2.1 x 23 cm³

- ECAL: The heart of PADME
- BGO covered with diffuse reflective TiO₂ paint
 - additional optical isolation: 50 100 µm black tedlar foils
- SAC: forward photon detector
 - 5 x 5 matrix of PbF₂ crystals
 - 30 x 30 mm² front face
 - Hamamatsu R13478UV-11 with custom dividers

ECal Energy map (approx. MeV)

ECal ev. 11 (0 3032)

Charged particle detectors

- An extensive work on the preparation, test and commissioning of the individual detecting elements
- 96 + 96 + 16 (x2) scintillator-WLS-SiPM RO channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution

HitTimeDifference

- Online time resolution: ~ 2 ns
- Offline time resolution after fine T₀ calculation better than 1 ns

- Custom SiPM electronics, Hamamatsu S13360 3 mm, 25μm pixel SiPM
- Differential signals to the controllers, HV, thermal and current monitoring

Data taking

- PADME commissioning and Run-1 started in Autumn 2018 and ended on February 25th
- > 6x10¹² positrons on target recorded
- Data quality and detector calibration in progress
- 2 months of stop before PADME Run-2
 - At least the same amount of running time expected
 - Time for analysis and deeper understanding of the collected data

PADME sensitivity

2.5x10¹⁰ fully GEANT4 simulated 550MeV e+ on target events

Number of BG events is extrapolated to 1x10¹³ electrons on target

$$\frac{\Gamma(e^+e^- \to A'\gamma)}{\Gamma(e^+e^- \to \gamma\gamma)} = \frac{N(A'\gamma)}{N(\gamma)} \frac{Acc(\gamma\gamma)}{Acc(A'\gamma)} = \varepsilon \cdot \delta$$

PADME:

2 years of data taking at 60% efficiency with bunch length of 200 ns 4x10¹³ EOT = **20000 e**⁺/bunch × 2 × **3.1 · 10**⁷s x 0.6 · **49 Hz**

• Operating in paralel with the ongoing VEPP-3 activities

Perspectives

- The limit in the PADME sensitivity originates from
 - Statistics, sensitivity ~ sqrt(N)
 - Background due to overlapping, scales as N
 - e⁺ beam energy
- Possible improvements
 - Increase the statististics
 - PADME@VEPP internal gas target
 - PADME@DAΦNE slow extraction
 - Increase the beam energy
 - Cornell, Jlab, etc...

N.B. Different experimental techniques, sometimes different prior assumptions!

M_{miss} searches in e⁺ on target

	PADME	MMAPS	VEPP3
Place	LNF	Cornell	Novosibirsk
Beam energy	550 MeV	Up to 5.3 GeV	500 MeV
M _{A'} limit	23 MeV	74 MeV	22 MeV
Target thickness	2x10 ²² e ⁻ /cm ²	O(2x10 ²³) e ⁻ /cm ²	5x10 ¹⁵ e ⁻ /cm ²
Beam intensity	8 x 10 ⁻¹¹ mA	2.3 x 10 ⁻⁶ mA	30 mA
e⁺e⁻ → γγ rate [s⁻¹]	15	2.2 x 10 ⁶	1.5 x 10 ⁶
ε² limit (plateau)	10 ⁻⁶ (10 ⁻⁷ SES)	10 ⁻⁶ - 10 ⁻⁷	10 ^{-7/-8}
Time scale	now	?	2020 (ByPass) ?
Status	Ending run 1 Expecting run 2	Not funded Alternatives?	ByPass currently suspended?

Conclusion

- Missing mass searches provide a universal probe to new light states
- Using constrained initial state allows significant background suppression and control
- NA62 is the present kaon physics laboratory, providing also access to numerous new physics searches, including light states
- PADME just ended Run 1 data taking
 - All systems operational after an intensive effort from the collaboration and the participating laboratories
- Various approaches, complementary techniques

PADME early physics

- The PADME physics program is inevitably related to precise calibration and monitoring of the calibration of the detectors
- Background understanding
 - The background in the New Physics searches is the calibration tool
 - Understanding the Standard Model processes is the ticket to the "big event"
- Major background sources (or major SM processes)
 - Multiphoton annihilation $e^+e^- \rightarrow \gamma \gamma, e^+e^- \rightarrow \gamma \gamma \gamma, e^+e^- \rightarrow \gamma \gamma \gamma \gamma, \dots$
 - Bremsstrahlung in the field of the nuclei lack of experimental data in the range of O(100 MeV), precision of GEANT4 \sim (3-4) %
 - Photon emission in the field of orbital electrons
- Bremsstrahlung differential cross-section measurements at different energy in the O(100 MeV) interval and (if possible) materials highly desirable
- Multiphoton annihilation to be studied and compared with MC generators

Beam measurement

- Two detectors provide a particle-by-particle beam information
 - Upstream: 50 µm thick MIMOSA chip, two stations of double chips (4 in total)
 - Downstream: TimePix3 array

- A dedicated support structure for MIMOSA operation in vacuum (Peltier cooling)
- Tested in vacuum for a fist time
 - Difference chip copper: $\sim 10^{\circ}$ C and constant

