

Light Hadron Spectroscopy at BESIII

Tianjue Min

On behalf of BESIII collaboration

Nanjing University

Feb. 25th – Mar 1st, 2019, Novosibirsk

BEPCII/BESIII

Beam energy: 1.0-2.3 GeV Energy spread: 5.16 x 10^{-4} Design luminosity 1 x 10^{33} /cm²/s @ ψ (3770) Achieved luminosity: 1.01 x 10^{33} /cm² (2016)

LINAC

BESIII detector

Main Drift Chamber $\sigma_P/P = 0.5\% @ 1 \text{ GeV}$ $\sigma_{dE/dx} = 6\%$

Time of Flight

 σ_T = 90 ps (barrel) 110 ps (endcap)

Super Conducting Solenoid 1.0 T (2009) 0.9 T (2012)

Electromagnetic Calorimeter $\sigma_E/\sqrt{E} = 2.5\% @ 1 \text{ GeV}$

BESIII data sets

World largest J/ψ, ψ(3686), ψ(3770), ... samples

Light hadron spectroscopy at BESIII

- Light hadron spectroscopy is a key tool to study/develop the QCD theory in strong coupling regime
- A major concern: do new forms of hadrons exist?

- BESIII's advantages: the world largest J/ ψ , ψ (3686) decay samples
 - Gluon rich processes
 - Kinematic favorable
 - Clean: produced directly from e⁺e⁻ collisions
 - J^{PC}/isospin filter

Selected highlights

- X(ppbar)/X(1835)
- Search for glueballs
- a₀(980)-f₀(980) mixing

X(ppbar)/X(1835)

X(ppbar)/X(1835): the same or not?

- X(ppbar): an anomalous strong pp threshold enhancement structure in $J/\psi \rightarrow \gamma p \overline{p}$, first observed by BESII
 - 0-+
 - Mass = $1836.5^{+19+18}_{-5} \pm 19 \text{ MeV/c}^2$
 - Width < 76 MeV/c² @ 90% C.L.
 - B.R. = $(9.0^{+0.4+1.5}_{-1.1-5.0} \pm 2.3) \times 10^{-5}$
- X(1835): observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ (BESII); also seen in $J/\psi \rightarrow \gamma K_s K_s \eta$ (BESIII)
 - 0-+
 - Mass = $1844 \pm 9^{+16}_{-25}$ MeV/c²
 - Width = 192^{+20+62}_{-17-43} MeV/c²
 - B.R. $(\eta'\pi^+\pi^-) = (2.87 \pm 0.09^{+0.49}_{-0.52}) \times 10^{-4}$
 - B.R.($K_sK_s\eta$) = $(3.31^{+0.33+1.96}_{-0.30-1.29})\times 10^{-5}$

Phys. Rev. Lett. 106, 072002

8

Anomalous $\eta' \pi^+ \pi^-$ line shape near ppbar mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

Phys. Rev. Lett. 117, 042002

- Re-study using high statistics J/ψ decay sample
- Clear signal of X(1835), X(2120), X(2370), and a structure near 2.65 GeV/c²
- Significant distortion near ppbar mass threshold
 - Seen in both η^\prime decay modes

What causes this distorted line shape?
□ The opening of X(1835)→pp?
□ Interference between two resonances?

Anomalous $\eta' \pi^+ \pi^-$ line shape near ppbar 10 mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

A ppbar molecule state?

A ppbar bound state?

- Model I: Flatte formula
 - Strongly couples to proton-antiproton, significance > 7σ
 - $M_{pole} = 1909.5 \pm 15.9^{+9.4}_{-27.5} \text{ MeV/c}^2$
 - $\Gamma_{\text{pole}} = 273.5 \pm 21.4^{+6.1}_{-64.0} \text{ MeV/c}^2$
- Model II: two coherent Breit-Wigner
 - A broad resonance, whose mass/width are consistent with the X(1835)
 - A narrow resonance just below the ppbar mass threshold, significance > 7σ
 - Mass = $1870.2 \pm 2.2^{+2.3}_{-0.7}$ MeV/c²
 - Width = $13.0 \pm 6.1^{+2.1}_{-3.8}$ MeV/c²

Both models well describes data with almost equally good fit quality Either there is a ppbar molecule state or there is a ppbar bound state!

Phys. Rev. Lett. 117, 042002

Search for X(1835)'s other decay modes 11

- J/ $\psi \rightarrow \gamma \gamma \phi$: first observation of X(1835) $\rightarrow \gamma \phi$
 - Sizeable ss components in X(1835): more complicated than a pure NN state
 - B.R. = $(1.77 \pm 0.35 \pm 0.25)x10^{-6}$ or $(8.09 \pm 1.99 \pm 1.35)x10^{-6}$

Phys. Rev. D 97, 051101

- $J/\psi \rightarrow \omega \eta' \pi^+ \pi^-$: no obvious sign of X(1835)'s existence
 - B.R. < 6.2x10⁻⁵ @ 90% C.L.
 - Strong coupling with di-gluon?

]/ψ→γΧ]/ψ→ωΧ
X(1835) →η′π⁺π⁻	3x10 ⁻⁴ ~4x10 ⁻⁴	<6.2x10 ⁻⁵ (90%)
X(pp̄)→pp̄	9x10 ⁻⁵	<3.9x10 ⁻⁶ (90%)

arXiv:1902.04862 [hep-ex]

States between 1.8-1.9 GeV/c² at BESIII

Search for glueballs

Search for glueball at BESIII

- Glueball is formed by non-abelian gluon-gluon interaction, searching for glueball provides a direct fundamental test of the QCD theory
- Lattice QCD predicts the lowest lying 0-+, 0++, 2++ glueballs have masses below 3 GeV/c²
- Radiative J/ ψ decays are ideal for searching for glueballs
 - 0-+: $J/\psi \rightarrow \gamma PPP, \gamma VV$
 - 0++/2++: J/ $\psi \rightarrow \gamma PP$, γVV

PWA of J/ ψ →γηη

- J/ $\psi \rightarrow \gamma \eta \eta$: a good channel to study 0++ and 2++ states
 - Production rate of $f_0(1710)$ is compatible with LQCD prediction for a pure scalar glueball

-> large overlap between f₀(1710) and a 0++ glueball?

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9σ
$f_2'(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
f ₂ (1810)	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) imes 10^{-5}$	7.6 <i>o</i>

Phys. Rev. D 87, 092009

2++ components above 2 GeV is well described by a single $f_2(2340)$ with fairly large production rate $\rightarrow f_2(2340)$ could be a good candidate for the lowest lying tensor glueball

PWA of $J/\psi \rightarrow \gamma K_s K_s$

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma ({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance
K*(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231\pm21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765\pm2^{+1}_{-1}$	1723^{+6}_{-5}	$146\pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364\pm9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411\pm10\pm7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$	33σ
$f_2'(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345_{-40}^{+50}	$507\pm37^{+18}_{-21}$	322_{-60}^{+70}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$	26σ
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP					$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$	13σ

Phys. Rev. D 98, 072003

B.R.[J/ $\psi \rightarrow \gamma f_0(1710)$] is one-order of magnitude larger than B.R.[J/ $\psi \rightarrow \gamma f_0(1500)$]

16

Tensor contribution above 2 GeV is dominantly f₂(2340)

PWA of J/ ψ →γφφ

- Phys. Rev. D 93, 112011
- Provides an opportunity to study 0-+ and 2++ states above 2 GeV/c²
- 0-+ contributions
 - η(2225) is confirmed
 - Newly observed: $\eta(2100)$ and X(2500)
- 2++ contributions
 - f₂(2010), f₂(2300), f₂(2340)
 - Large production rate of f₂(2340)

Again, it seems f2(2340) could be a good tensor glueball candidate!

0-+ around 2.5 GeV is close to the predicted mass for pseudoscalar glueball

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	$\mathrm{B.F.}(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+18}_{-11}$	$185^{+12}_{-14}{}^{+44}_{-17}$	$(2.40\pm0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	2050^{+30+77}_{-24-26}	$250^{+36+187}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43\pm0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91\pm0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	6.8σ

Comparison among BESIII results

0	$\eta\eta$				K _S K _S	
0++	M (MeV/c²)	Γ (MeV/c²)	B.R. (x10 ⁻⁵)	M (MeV/c²)	Γ (MeV/c²)	B.R. (x10 ⁻⁵)
f ₀ (1370)	-	-	-	$1350 \pm 9^{+12}_{-2}$	$231 \pm 21^{+28}_{-48}$	$1.07\substack{+0.08+0.36\\-0.07-0.34}$
f _o (1500)	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$1.65\substack{+0.26+0.51\\-0.31-1.40}$	1505	109	$1.59\substack{+0.16+0.18\\-0.16-0.56}$
f _o (1710)	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$23.5_{-1.1-7.4}^{+1.3+12.4}$	$1765 \pm 2^{+1}_{-1}$	$146 \pm 3^{+3}_{-1}$	$20.0\substack{+0.3+3.1\\-0.2-1.0}$
f ₀ (1790)	-	-	-	$1870 \pm 7^{+2}_{-3}$	$146 \pm 14^{+7}_{-15}$	$1.11\substack{+0.06+0.19\\-0.06-0.32}$
f ₀ (2100)	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$11.3^{+0.9+6.4}_{-1.0-2.8}$	-	-	-
f ₀ (2200)	-	-	-	$2184 \pm 5^{+4}_{-2}$	$364 \pm 9^{+4}_{-7}$	$27.2^{+0.8+1.7}_{-0.6-4.7}$
f ₀ (2330)	-	-	-	$2411 \pm 10^{+7}_{-7}$	$349 \pm 18^{+23}_{-1}$	$4.95\substack{+0.21+0.66\\-0.21-0.72}$

2	$\eta\eta$		K _s K _s			$\phi\phi$			
2++	M (MeV/c²)	Γ (MeV/c²)	B.R. (x10 ⁻⁵)	M (MeV/c²)	Γ (MeV/c²)	B.R. (x10 ⁻⁵)	M (MeV/c²)	Γ (MeV/c²)	B.R. (x10 ⁻⁵)
f ₂ (1525)	$1513 \pm 5^{+4}_{-10}$	75_{-10-8}^{+12+16}	$3.42_{-0.51-1.30}^{+0.43+1.37}$	1516 ± 1	$75 \pm 1 \pm 1$	$7.99\substack{+0.03+0.69\\-0.04-0.50}$	-	-	-
f ₂ (2340)	$2362^{+31+140}_{-30-63}$	$334_{-54-100}^{+62+165}$	5.60 ^{+0.62+2.37} _{-0.65-2.07}	$2233 \pm 34^{+9}_{-25}$	$507 \pm 37^{+18}_{-21}$	$5.54_{-0.40-1.49}^{+0.34+3.82}$	2339	319	$19.1\pm0.7^{+7.2}_{-6.9}$

Search for glueball at BESIII

- 0++ sector
 - The production rate of f₀(1710) is compatible with LQCD prediction for a pure gauge scalar glueball
- 2++ sector
 - $f_2(2340)$ seems to be a good candidate for its large production rate in radiative J/ ψ decays
- 0-+ sector
 - X(2370) could be a candidate for 0-+ glueball
 - X(2500) observed in J/ $\psi \rightarrow \gamma \varphi \varphi$ and the structure around 2.6 GeV/c² observed in J/ $\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

Ϳ/ψ-→γΡΡ	J/ψ→γVV	Ϳ/ψ→γΡΡΡ
Ϳ/ψ→γηη	Ϳ/ψ→γωφ	Ϳ/ψ→γΚΚη′
J/ψ→γπ⁰π⁰	Ϳ/ψ→γφφ	J/ψ→γηπ⁰π⁰
Ϳ/ψ→γΚ _s Κ _s	J/ψ→γωω	
Ϳ/ψ→γηη′	•••	
Ϳ/ψ→γη′η′		

Published Release is in schedule Ongoing

$a_0(980)-f_0(980)$ mixing

$a_0(980)-f_0(980)$ mixing

- Theorists proposed a₀(980)-f₀(980) mixing mechanism ~40 years ago, to clarify the nature of these two states
- BESIII observed evidence of $a_0(980)-f_0(980)$ mixing using 225 million J/ ψ events and 106 million ψ' events

• By analyzing 1.3 billion J/ ψ and 450 million ψ' collected by BESIII, $a_0(980)$ $f_0(980)$ mixing is finally confirmed

TABLE II. The branching fractions (\mathcal{B}) and the intensities (ξ) of the $a_0^0(980)$ - $f_0(980)$ mixing. The first uncertainties are statistical, the second ones are systematic, and the third ones are obtained using different parameters for $a_0^0(980)$ and $f_0(980)$ as described in the text.

	$f_0(980)$ -	$\rightarrow a_0^0(980)$	
Channel	Solution I	Solution II	$a_0^0(980) \to f_0(980)$
\mathcal{B} (mixing) (10 ⁻⁶) \mathcal{B} (EM) (10 ⁻⁶) \mathcal{B} (total) (10 ⁻⁶)	$\begin{array}{c} 3.18 \pm 0.51 \pm 0.38 \pm 0.28 \\ 3.25 \pm 1.08 \pm 1.08 \pm 1.12 \\ 4.93 \pm 1.01 \pm 0.96 \pm 1.09 \end{array}$	$\begin{array}{c} 1.31 \pm 0.41 \pm 0.39 \pm 0.43 \\ 2.62 \pm 1.02 \pm 1.13 \pm 0.48 \\ 4.37 \pm 0.97 \pm 0.94 \pm 0.06 \end{array}$	$0.35 \pm 0.06 \pm 0.03 \pm 0.06$
ξ (%)	$0.99 \pm 0.16 \pm 0.30 \pm 0.09$	$0.41 \pm 0.13 \pm 0.17 \pm 0.13$	$0.40 \pm 0.07 \pm 0.14 \pm 0.07$
	74σ		5 5σ

Summary

- BESIII has obtained many results in light hadron spectroscopy since its first physics run started from 2009
 - There are X(ppbar) and X(1835), now we have established connection between them!
 Either a proton-antiproton molecule state or bound state exists
 - X(1840) and X(1870) it's very strange/interesting to see so many states with similar properties (mass/width/decay modes/...) in this region
 - Extensive and systematic searching for glueballs: f₀(1710), f₂(2340), X(2370), X(2500), and X(26??), ...
 - First observation of a₀(980)-f₀(980) mixing. Many unexpected/interesting phenomena: narrow f₀(980), large isospin breaking rate, ...
- After 2018's J/ ψ data taking, the amount of total J/ ψ events has increased from 1.3 billion to 10 billion. More and more interesting results are expected in the near future.

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Use the Flatté formula for the line shape
 - $T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 s i\sum_k g_k^2 \rho_k}$

A pp

molecule-

like state?

- $\sum_{k} g_{k}^{2} \rho_{k} \simeq g_{0}^{2} (\rho_{0} + \frac{g_{p\bar{p}}^{2}}{g_{0}^{2}} \rho_{p\bar{p}})$
- $g_{p\bar{p}}^2/g_0^2$ is the ratio between the coupling strength to the $p\bar{p}$ channel and the summation of all other channels

The state around 1.85 GeV/ c^2	
\mathcal{M} (MeV/ c^2)	$1638.0 \begin{array}{c} ^{+121.9}_{-121.9} \begin{array}{c} ^{+127.8}_{-254.3} \end{array}$
$g_0^2 ((\text{GeV}/c^2)^2)$	$93.7 \begin{array}{r} +35.4 \\ -35.4 \\ -43.9 \end{array}$
$g_{p\bar{p}}^2/g_0^2$	$2.31 {}^{+0.37}_{-0.37} {}^{+0.83}_{-0.60}$
$M_{pole} (MeV/c^2) *$	$1909.5 \begin{array}{c} +15.9 \\ -15.9 \\ -27.5 \end{array}$
$\Gamma_{\rm pole} ({\rm MeV}/c^2) *$	$273.5 \begin{array}{c} +21.4 \\ -21.4 \\ -64.0 \end{array}$
Branching Ratio	$(3.93 {}^{+0.38}_{-0.38} {}^{+0.31}_{-0.84}) \times 10^{-4}$

* The pole nearest to the $p \overline{p}$ mass threshold

 $\log \mathcal{L} = 630549.5$

Significance of $g_{p\overline{p}}^2/g_0^2$ being non-zero is larger than 7σ X(1920) is needed with 5.7 σ

Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

• Use coherent sum of two Breit-Wigner amplitudes

•	T -	$\sqrt{ ho_{out}}$	⊥	$\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}$
•	1 —	$\overline{M_1^2 - s - iM_1\Gamma_1}$	т	$\overline{M_2^2 - s - iM_2\Gamma_2}$

	X(1835)	
	M (MeV/ <i>c</i> ²)	$1825.3 \begin{array}{c} +2.4 \\ -2.4 \end{array} \begin{array}{c} +17.3 \\ -2.4 \end{array}$
	$\Gamma (MeV/c^2)$	$245.2 \begin{array}{c} ^{+14.2}_{-12.6} \begin{array}{c} ^{+4.6}_{-9.6} \end{array}$
	B.R. (constructive interference)	$(3.01 {}^{+0.17}_{-0.17} {}^{+0.26}_{-0.28}) \times 10^{-4}$
	B.R. (destructive interference)	$(3.72 {}^{+0.21}_{-0.21} {}^{+0.18}_{-0.35}) \times 10^{-4}$
	X(1870)	
Ann	M (MeV/ c^2)	$1870.2 \begin{array}{c} +2.2 \\ -2.3 \end{array} \begin{array}{c} +2.3 \\ -0.7 \end{array}$
bound state?	$\Gamma (MeV/c^2)$	$13.0 \begin{array}{c} +7.1 \\ -5.5 \\ -3.8 \end{array}$
	B.R. (constructive interference)	$(2.03 {}^{+0.12}_{-0.12} {}^{+0.43}_{-0.70}) \times 10^{-7}$

 $\log \mathcal{L} = 630540.3$

Significance of X(1870) is larger than 7σ X(1920) is not significant

PWA of J/ $\psi \rightarrow \gamma \pi^0 \pi^0$

Phys. Rev. D 92, 052003

Extracted intensity

- Nominal Solution
- Ambiguous Solution

- A piecewise function that describes the dynamics of the π⁰π⁰ system is determined as a function of M(π⁰π⁰)
- ✓ Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c²
- ✓ Ambiguities present above KK threshold

26 PWA of $J/\psi \rightarrow \gamma K_S K_S$ (model independent)

2.5

2.5

2.5

2

- ✓ Significant features of the scalar spectrum includes structures near 1.7 and above 2.0 GeV/c²
- Good agreement with results of model dependent PWA
- ✓ Ambiguities exist in model independent PWA

Observation of X(2370) in $J/\psi \rightarrow \gamma K K \eta'$

- X(2120) and X(2370) were first observed by the BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - LQCD predicts the lowest lying 0-+ glueball has mass between 2.3-2.6 GeV/c²
 - X(2120) and X(2370) are candidates?
- Combined study of $J/\psi \rightarrow \gamma K^+K^-\eta'/\gamma K_S K_S \eta'$
 - First observation of X(2370) in this process

	combined results
$M \; ({\rm MeV}/c^2)$	$2343.91 \pm 6.88(stat.) \pm 1.23(sys.)$
$\Gamma (MeV)$	$117.73 \pm 12.75(stat.) \pm 4.14(sys.)$
$B(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta')$	$(1.86 \pm 0.39 \ (stat.) \pm 0.29 \ (sys.)) \times 10^{-5}$
$B(J/\psi \to \gamma X(2370) \to \gamma K_S^0 K_S^0 \eta')$	$(1.19 \pm 0.37 \ (stat.) \pm 0.18 \ (sys.)) \times 10^{-5}$

- Mass/width are consistent with X(2370) in J/ $\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- Br[X(2370)→KKη']/Br[X(2370)→η'π⁺π⁻] ~ 1/15
- A theoretical work predicts $\Gamma_{G\rightarrow KK\eta'}/\Gamma_G=0.011$ and $\Gamma_{G\rightarrow \eta'\pi\pi}/\Gamma_G=0.090$ for $M_G=2.37$ GeV/c² (PRD 87, 054036)
- No clear signal of X(2120)

Spin-parity is not yet determined

27