

QCD effects in searches for GeV-scale new physics

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

International Workshop on e^+e^- collisions from ϕ to Ψ

BINP SB RAS, Novosibirsk, Russia

Widely accepted statements

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe

Widely accepted statements

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe

Widely accepted statements

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe
- New Heavy particle contribution to the Higgs boson mass lifts it up but miraculously m_h ~ E_{EW}

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Disclaimer

There are no general theoretical motivation for the New Particles to be of (sub)GeV mass

However for the feebly coupled light particle best place to show up is the intensity frontier fixed target experiment

Disclaimer

There are no general theoretical motivation for the New Particles to be of (sub)GeV mass

However for the feebly coupled light particle best place to show up is the intensity frontier fixed target experiment

Main task

• Moreover, there are many concrete BSM theories which suggest such theoretical motivations

- Then the problem is how to properly account for the new particle (SM gauge singlet) effective coupling to the SM strongly-interacting states
 - for $m \gg 1$ GeV it couples to partons
 - for $m \ll 1$ GeV it couples to hadrons
 - ▶ how to calculate the new particle production and decay rates for m ≈ 1 GeV ?
 - in the concrete models
 "parton" and "hadron" answers often mismatch
- Eventually we must predict the signal rate 'in observed particles': pions, kaons, etc

Main task

- Moreover, there are many concrete BSM theories which suggest such theoretical motivations
- Then the problem is how to properly account for the new particle (SM gauge singlet) effective coupling to the SM strongly-interacting states
 - for $m \gg 1$ GeV it couples to partons
 - for $m \ll 1$ GeV it couples to hadrons
 - ▶ how to calculate the new particle production and decay rates for $m \simeq 1 \text{ GeV}$?
 - in the concrete models
 "parton" and "hadron" answers often mismatch
- Eventually we must predict the signal rate 'in observed particles': pions, kaons, etc

Three Portals to the hidden World

Renormalizable interaction including SM field and new (hypothetical) fields singlets with respect to the SM gauge group

Attractive feature:

couplings are insensitive to energy in c.m.f., hence low energy experiments (intensity frontier) are favorable

• Scalar portal: SM Higgs doublet *H* and hidden scalar *S*

the simplest dark matter

$$\mathscr{L}_{\text{scalar portal}} = -\beta H^{\dagger} H S^{\dagger} S - \mu H^{\dagger} H S$$

• Spinor portal: SM lepton doublet L, Higgs congugate field $\tilde{H} = \varepsilon H^*$ and hidden fermion N sterile neutrino !!

$$\mathscr{L}_{\text{spinor portal}} = -y\overline{L}\widetilde{H}N$$

 Vector portal: SM gauge field of U(1)_Y and gauge hidden field of abelian group U(1)' hidden photon

$$\mathscr{L}_{\text{vector portal}} = -\frac{\varepsilon}{2} B_{\mu\nu}^{U(1)\gamma} B_{\mu\nu}^{U(1)'}$$

Dmitry Gorbunov (INR)

NA64

Massive vectors (paraphotons)

Massive vectors: decays are under control

Massive vectors: production by protons

• decays of $\pi^0, \, \eta^0$ and $ho^\pm, \,
ho^0, \, \omega$

$$\mathsf{Br}_{\pi^0 \to \mathcal{A}' \gamma} \simeq 2\varepsilon^2 \left(1 - \frac{m_{\mathcal{A}'}^2}{m_{\pi^0}^2} \right)^3 \mathsf{Br}_{\pi^0 \to \gamma\gamma}$$

 proton bremsstrahlung concervatively corrected by the Dirac (electric) form factor of proton

$$F_1 = \frac{1}{\left(1 + \frac{q^2}{m_D^2}\right)^2} \rightarrow \frac{1}{m_{A'}^4}$$

with Dirac mass squared $m_D^2 = 12/r_D^2$ and the Dirac radius $r_D \approx 0.8$ fm

• quark bremsstrahlung ?? still under study...

1411.4007

Dmitry Gorbunov (INR)

Seesaw type I mechanism: $M_N \gg m_{active}$

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

where I = 1, 2, 3 and $\alpha = e, \mu, \tau$ $\tilde{H}_a = \varepsilon_{ab} H_b^*$

When Higgs gains $\langle H \rangle = v / \sqrt{2}$ we get in neutrino sector

$$\mathscr{V}_{N} = v \frac{f_{\alpha l}}{\sqrt{2}} \overline{v}_{\alpha} N_{l} + \frac{M_{N_{l}}}{2} \overline{N}_{l}^{c} N_{l} + \text{h.c.} = \frac{1}{2} \left(\overline{v}_{\alpha}, \overline{N}_{l}^{c} \right) \begin{pmatrix} 0 & v \frac{f}{\sqrt{2}} \\ v \frac{\hat{f}^{T}}{\sqrt{2}} & \hat{M}_{N} \end{pmatrix} \left(v_{\alpha}^{c}, N_{l} \right)^{\mathsf{T}} + \text{h.c.}$$

Then for $M_N \gg \hat{M}_D = v \frac{\hat{t}}{\sqrt{2}}$ we find the eigenvalues:

$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -\hat{M}_D \frac{1}{\hat{M}_N} \hat{M}_D^T \propto f^2 \frac{v^2}{M_N} \ll M_N$

Mixings: flavor state $v_{\alpha} = U_{\alpha i}v_i + \theta_{\alpha I}N_I$

active-active mixing: (PMNS-matrix U) $U^T \hat{M}^V U = diag(m_1, m_2, m_3)$

active-sterile mixing:
$$\theta_{\alpha l} = \frac{M_{D_{\alpha l}}}{M_l} \propto \hat{f} \frac{v}{M_N} \ll 1$$

Dmitry Gorbunov (INR)

Sterile neutrinos: production and decays

Interaction via neutral and charged weak hadronic currents

Do we need multimeson modes?

Dmitry Gorbunov (INR)

Actually not: 20% to production...

Decay modes normalized to quarks with QCD-corrections from

 $\tau \rightarrow v + hadrons$

And we use hadronic form factors...

Dmitry Gorbunov (INR)

Renormalizable inflaton at GeV scale

0912.0390

$$\begin{split} S_{X\mathrm{SM}} &= \int \sqrt{-g} \, d^4 x \left(\mathscr{L}_{\mathrm{SM}} + \mathscr{L}_{\mathrm{ext}} + \mathscr{L}_{\mathrm{grav}} \right), \\ \mathscr{L}_{\mathrm{ext}} &= \frac{1}{2} \partial_\mu X \partial^\mu X + \frac{1}{2} m_X^2 X^2 - \frac{\beta}{4} X^4 - \lambda \left(H^\dagger H - \frac{\alpha}{\lambda} X^2 \right)^2, \\ \mathscr{L}_{\mathrm{grav}} &= - \frac{M_P^2 + \xi X^2}{2} R, \end{split}$$

inflaton mass

$$m_{\chi}=m_h\sqrt{rac{\beta}{2lpha}}=\sqrt{rac{\beta}{\lambda\theta^2}}.$$

phenomenology is fixed by mixing with Higgs

$$\theta^2 = \frac{2\beta v^2}{m_{\chi}^2} = \frac{2\alpha}{\lambda}$$

Scalar portal: light inflaton

1005

QCD modes: claimed uncertainties upto 10²

Interaction among the final hadronic states

following J.Donoghue, J.Gasser and H Leutwyler (1990)

Dmitry Gorbunov (INR)

N

Limits from LHCb

1508.04094

M

We need to know the scalar form factors

$$\mathscr{L} = -\theta \sum_{f} \frac{m_{f}}{v} \bar{\psi}_{f} \psi_{f} S,$$

all meson channels are interesting, $\pi\pi$, *KK*, $\eta\eta$, 4π , etc

$$egin{aligned} &\langle \pi^i(p)\pi^k(p')| heta^\mu_\mu|0
angle\equiv\Theta_\pi(s)\delta^{ik},\ &\langle \pi^i(p)\pi^k(p')|m_uar{u}u+m_dar{d}d|0
angle\equiv\Gamma_\pi(s)\delta^{ik},\ &\langle \pi^i(p)\pi^k(p')|m_sar{s}s|0
angle\equiv\Delta_\pi(s)\delta^{ik}, \end{aligned}$$

$$G_{\pi}(s) = rac{2}{9}\Theta_{\pi}(s) + rac{7}{9}\left(\Gamma_{\pi}(s) + \Delta_{\pi}(s)
ight).$$

At small $s = (p + p')^2 = M_S^2$ we can compute them within ChPT

$$\begin{split} \Theta_{\pi}(s) &= s + 2m_{\pi}^2, & \Theta_{K}(s) &= s + 2m_{K}^2, \\ \Gamma_{\pi}(s) &= m_{\pi}^2, & \Gamma_{K}(s) &= \frac{1}{2}m_{\pi}^2, \\ \Delta_{\pi}(s) &= 0, & \Delta_{K}(s) &= m_{K}^2 - \frac{1}{2}m_{\pi}^2. \end{split}$$

The estimates BSM people use

These estimates are based on dispersion relations

There are several issues, e.g.

- Unitarity requires $\Theta(\infty) = 0$, while $\Theta(s) \propto s$
 - ignore (why not important for low s?)
 - make $\Theta(\infty) = 0$ by hand (changes or not low *s*, always changes high *s* behaviour)
- There are many channels, but people typically reduce to the 2-channels system, $\pi\pi$, *KK*
 - we need more to make predictions

```
\begin{array}{ll} \eta \eta, 4\pi, \dots & & \\ \text{hep-ph/9909292} \\ \hline & \text{the truncation is not justified} \\ \text{some channels are strongly coupled,} \\ \text{e.g. } Br(f_0(1500) \rightarrow \pi\pi) \simeq 35\%, \ Br(f_0(1500) \rightarrow 4\pi) \simeq 50\%, \\ \text{results depend on the way one adds a new channel} \\ \hline & \text{Nobody calculate the uncertainty of their results:} \end{array}
```

30% (like typically in ChPT), 'factor of 2', '10' ?

1812.08088

J.Donoghue, J.Gasser, H.Leutwyler (1990)

Summary

- If some exotics even feebly couples to QCD-stuff
- QCD-effects MUST BE properly accounted for
- help from QCD-people are welcome !!
- It would be nice to 'measure' the scalar form-factors, but we need all the three...
- some work has been already done...

Backup slides

Dispersion system truncated

$$F_{1}(s) = \sum_{j=1}^{N} \int \frac{ds'}{\pi} \frac{T_{1j}^{*}(s')\sigma_{j}(s')}{s'-s} F_{j}(s') + \left\{ \sum_{j=N+1}^{M} \int \frac{ds'}{\pi} \frac{T_{1j}^{*}(s')\sigma_{j}(s')}{s'-s} F_{j}(s') \right\}$$

$$F_{2}(s) = \sum_{j=1}^{N} \int \frac{ds'}{\pi} \frac{T_{2j}^{*}(s')\sigma_{j}(s')}{s'-s} F_{j}(s') + \left\{ \sum_{j=N+1}^{M} \int \frac{ds'}{\pi} \frac{T_{2j}^{*}(s')\sigma_{j}(s')}{s'-s} F_{j}(s') \right\}$$

$$F_{N}(s) = \sum_{j=1}^{N} \int \frac{ds'}{\pi} \frac{T_{Mj}^{*}(s')\sigma_{j}(s')}{s'-s} F_{j}(s') + \left\{ \sum_{j=N+1}^{M} \int \frac{ds'}{\pi} \frac{T_{Nj}^{*}(s')\sigma_{j}(s')}{s'-s} F_{j}(s') \right\}$$

Light sgoldstinos in SUSY models

breaking of $SU(2)_W \times U(1)_Y$ by the $\langle H \rangle = v$

Goldstones bosons couple to all massive fields (Goldberger–Treiman formula like for pion)

$\mathscr{L} = \frac{1}{v} J^{\mu}_{SU(2)_W \times U(1)_Y} \partial_{\mu} H$

SUSY is spontaneously broken

breaking of SUSY by $\langle F_{\varphi} \rangle = F$ Goldstone fermion: goldstino

$$\mathscr{L}_{\psi} \propto \frac{1}{F} J^{\mu}_{SUSY} \partial_{\mu} \psi$$

Goldstino supermultiplet: (boson φ (sgoldstino), fermion ψ (goldstino))

$$\begin{array}{ll} \text{SUSY} &\longleftrightarrow & F \equiv \langle F_{\varphi} \rangle \neq 0 & \Phi = \varphi + \sqrt{2}\theta \, \psi + F_{\varphi}\theta\theta & \frac{1}{\sqrt{2}} \left(\varphi + \varphi^{\dagger} \right) \equiv S - \text{scalar} \\ \text{sgoldstino:} & \mathscr{L}_{S,P} \propto \frac{M_{\text{soft}}}{F} & F \sim (\text{SUSY scale})^2 & \frac{1}{i\sqrt{2}} \left(\varphi - \varphi^{\dagger} \right) \equiv P - \text{pseudoscalar} \end{array}$$

M_{soft}: MSSM soft terms superpartner masses and trilinear couplings,

gauginos:

$$M_{\lambda}\lambda\lambda \longrightarrow rac{M_{\lambda}}{F}SF_{\mu\nu}F^{\mu\nu}, \ rac{M_{\lambda}}{F}PF_{\mu\nu}\tilde{F}^{\mu
u}$$

squarks, sleptons:

$$A_{ij}h_u\tilde{q}_i\tilde{u}_j\longrightarrow rac{A_{ij}}{F}Sh_uq_iu_j, \ rac{A_{ij}}{F}Ph_uq_iu_j$$

Dmitry Gorbunov (INR)

QCD effects in New Physics

massless at tree level naturally may be light...

Direct coupling to gluonic tensor

• For $M_S \ll$ 1 GeV estimate coupling to pions through the triangle anomaly in $T_{\mu\mu}$ M.Voloshin, V.Zakharov (1980)

$$-\langle \pi \pi \left| \frac{b g_s^2}{32 \pi^2} \, G_{\mu\nu}^a \, G_{\mu\nu}^a \right| \mathbf{0} \rangle = \langle \pi \pi \left| \, T_{\mu\mu} \right| \mathbf{0} \rangle = q^2 \varphi_\pi^\alpha \varphi_\pi^\alpha / 2$$

hence we get an amplification

1511.05403

$$\Gamma(S o \pi^0 \pi^0) pprox rac{lpha_s^2(M_3)}{eta^2(lpha_s(M_3))} rac{\pi m_S^3 M_3^2}{4F^2} \sqrt{1 - rac{4m_{\pi^0}^2}{m_S^2}},$$

• For $M_S \gg 1$ GeV we have gluons and a suppression

$$g_s^2 G_{\mu\nu}^2$$
 is a renorm-invariant

$$\Gamma(S \to gg) = \left(\frac{\alpha_s(m_S)\beta(\alpha_s(M_3))}{\beta(\alpha_s(m_S))\alpha_s(M_3)}\right)^2 \frac{m_S^3 M_3^2}{4\pi F^2}.$$

The two rates mismatch by orders...