Measurement of hadronic cross-sections at CMD-3

Fedor Ignatov BINP, Novosibirsk

27 February 2019 PHIPSI19, Novosibirsk

R measurements

VEPP-2000: direct exclusive measurement of σ (e+e- \rightarrow hadrons) Only one working this days on scanning below <2 GeV World-best luminosity below 2 GeV (1 GeV excluded - where KLOE outperfom everybody)

BESIII, KEDR - direst scan from 2 GeV to 5 GeV

27 February 2019

2

Maximum c.m. energy is 2 GeV, project luminosity is L = 10³² cm⁻²s⁻¹at 2E= 2 GeV Unique optics, "round beams", allows to reach higher luminosity Experiments with two detectors, CMD-3 and SND, started by the end of 2010 3

27 February 2019

Collected Luminosity

Overview of CMD-3 data taking runs

CMD-3 detector

Tracking:

× Drift Chamber in 1.3 T magnetic field $\sigma_{R\phi} \sim 100 \ \mu m, \sigma_{Z} \sim 2.5 mm$ $\sigma_{P}/P \sim \sqrt{0.6^{2}+(4.4*p[GeV])^{2}},\%$

<u>Calorimetry:</u>

* Combined EM calorimeter (LXe,CsI, BGO) 13.4 X_0 in barrel part

- $\sigma_{\rm E}$ /E ~ 0.034/ JE [GeV] \oplus 0.020 barrel
- $\sigma_{\rm E}$ /E ~ 0.024/ JE [GeV] \oplus 0.023 endcap

* LXe calorimeter with 7 ionization layers with strip readout

~2mm measurement of conversion point, tracking capability,

shower profile (from 7 layers + CsI) PID:

x TOF system (σ_{T} < 1nsec)

particle id mainly for p, n

× Muon system

measured cross sections by CMD-3

Published (or submitted):

 $e+e- \rightarrow pp$, e⁺e⁻ → n' $2(\pi^{+}\pi^{-}), 3(\pi^{+}\pi^{-}),$ ωη, $ηπ^+π^-π^0$, $3(\pi^{+}\pi^{-})\pi^{0}$ K^+K^- , K_SK_1 , $K^+K^-\pi^+\pi^-$ * Near finished result: $e^+e^- \rightarrow D_0^*$ $K^+K^-\eta$, $K^+K^-\omega$ $\omega \pi^+ \pi^-$, $\eta \pi^+ \pi^-$

27 February 2019

Phys.Lett. B759 (2016) 634-640 $e^+e^- \rightarrow \pi^+\pi^-$,Phys.Lett. B740 (2015) 273-277 $e^+e^- \rightarrow \pi^+\pi^-$,Phys.Lett. B768 (2017) 345-350 $e^+e^- \rightarrow \pi^+\pi^-$,Phys.Lett. B723 (2013) 82-89 $\eta\gamma$, $\pi^0\gamma$,Phys.Lett. B773 (2017) 150-158 $\pi^+\pi^-\pi^0\pi^0$, 2arXiv:1902.06449, submitted to PLB $\pi^+\pi^-\pi^0\pi^0$, 2Phys.Lett. B760 (2016) 314-319 $2(\pi^+\pi^-)\pi^0$,Phys.Lett. B779 (2018) 64-71 $Z(\pi^+\pi^-)\pi^0$,Phys.Lett. B756 (2016) 153-160 K^+K^- , K_5K_1

$e^+e^- \rightarrow \pi^+\pi^-\gamma$, $\eta \gamma, \pi^0 \gamma,$ $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$, 2($\pi^{+}\pi^{-}$), $2(\pi^{+}\pi^{-})\pi^{0}, 2(\pi^{+}\pi^{-}\pi^{0})$ K^+K^- , K_SK_L - at higher energies $K^{+}K^{-}\pi^{0}$, $K_{S}K_{I}\pi^{0}$, $K_{S}K_{I}\eta^{0}$, nn, $\pi^0 e^+ e^-$, $\eta e^+ e^-$

Under active analysis:

Analysis of mostly each channel takes full person-years: higher systematic requirement -> more effects -> more years PhiPsi19, Novosibirsk

e+e- -> π + π - by CMD3

Very simple, but the most challenging channel due to high precision requirement. Plans to reduce systematic error from 0.6-0.8% (by CMD2) -> ~0.4-0.5% (CMD3) Crucial pieces of analysis: Simple event signature

- × $e/\mu/\pi$ separation
- × precise fiducial volume
- × radiative corrections

Many systematic studies rely on high statistics events separation either by momentum or by energy deposition

Momentums works better at low energy < 0.8 GeV Energy deposition > 0.6 GeV

with 2 back-to-back

charged particles

e+e- -> π+π- by CMD-3

50 ∫² (without corrections) $F\pi$ result after Statistical precision of 45 event separation $|\mathbf{F}\pi|^2$ At CMD-2 it was without additional 40 cross section measurement possible to make corrections 35 for <u>2013+2018 data</u> separation by momentum $e/\mu/\pi$ 30 = only <0.52 GeV a few times better than any other separation 25 using energy experiments **20** \vdash e/µ/ π separation deposition in LL_ using particles calorimeter α/σ_{ππ} per 20 MeV 15E momentum 10 - CMD3 CMD2 BaBar KLOE BES 8.3 0.4 0.5 0.6 0.7 0.8 0.9 s. GeV 0.04 χ^2 / ndf 34.66 / 34 1.1p σ(e⁺e →μ⁺μ⁻)/σ_{αED} Nµµ/Nee/QED Prob 0.4364 1.08 p0 1.002 ± 0.002379 0.03 1.06 1.04 0.02 1.02 0.01 0.98 0.96 Compatible with QED 0.6 0.7 0.8 0.9 0.4 0.5 s. GeV 0.94 preliminary at the level of 0.25 % 0.92 10 0.9 0.3 0.65 0.35 0.55 0.6 0.7 0.4 0.45 0.5 2E, GeV 27 February 2019 PhiPsi19, Novosibirsk

$|F_{\pi}|^2$ 2013 vs 2018 scans

PID by momentum χ^2 / ndf 66.66 / 58 Prob 0.2038 |F^{|²/|F_{cMD3 fil}²⁻¹ 90'0} -- CMD3 2013 p0 0.0007427 ± 0.0008 χ^2 / ndf 82.12 / 77 CMD3 2018 Prob 0.3236 p0 -0.0002457 ± 0.0004885 0.02 0 ... -0.02-0.04 $\Delta = 0.10 \pm 0.09 \%$ -0.060.3 0.4 0.5 0.6 0.7 0.8 0.9 vs. GeV 27 February 2019

Event separation using momentum consistent within ~ 0.1% between seasons

DCH was in different conditions: correlated noise one HV layer off in 2013

We should finalize analysis based on using energy deposition, before opening box. For 1st paper: using only full energy deposition in calorimeter final paper: exploiting info on shower profile + polar angle distribution¹¹

Systematic e+e- -> π + π - by CMD3

Our goals are to reach systematic level ~0.4-0.5%:	<u>status</u>
* Radiative corrections	with current MC generators 0.2% - integral cross-section 0.0 - 0.4% - from P spectra (we need theory help. NNI Q generators)
× $e/\mu/\pi$ separation can be checked and combined from different methods	~ 0.6 - 0.2 (at ρ) - 1.0(at 0.9 GeV) % by momentum ~ 1 % by energy - still work in progress
 Fiducial volume controlled independently by LXe and ZC subsystems, angular distribution 	0.2%
 * Beam Energy measured by method of Compton back scattering of the laser photons(σ_F< 50 keV) 	0.1%
* Electron bremsstrahlung loss	0.05%
* Pion specific correction	~ 0.1 % nuclear interaction
decay, nuclear interaction taken from data	0.6-0.3% pion decay
at ρ-peak by P ÷ 0.6%	
at few lowest points : 0.9%	
Many systematic studies rely on high statistics	

For some sources of systematics there is clear way how to bring it down

27 February 2019

12

e+e- -> π+π-γ

By selection non-collinear 2 tracks events, +suppression of bhabha by energy deposition It can be selected $\pi + \pi - \gamma$ events with detected photon

See poster by S.Tolmachev

PhiPsi19, Novosibirsk

13

$e+e- \rightarrow 3(\pi+\pi-)\pi 0$

Multihadrons production at NN

Can be described via optical nucleon-antinucleon potentials (most advanced "Milstein-Salnikov" parametrization)

Some questions still opened, for example: Why no structure in e+e- $\rightarrow 2(\pi+\pi-)$, but KK2pi effect is stronger than expected as seen in pp anihilation

PhiPsi19, Novosibirsk

15

Dynamics in 4π

See talk on Friday by E.Kozyrev

Production of e+e- $\rightarrow \pi^+\pi^-2\pi^0$, $2(\pi^+\pi^-)$ can be via many intermediate states:

Detail amplitude analysis was performed

- a1(1200)[1⁺]π[0⁻]
- $\rho[1^{--}]f_0/\sigma[0^{++}]$
- $\rho f_2(1270)[2^{++}]$
- $\rho^+ \rho^-$
- *a*₂(1320)[2⁺⁺]π
- $h_1(1170)[1^{+-}]\pi^0$
- $\pi'(1300)(0^{-+})\pi$

27 February 2019

We are trying to probe also charm-physics

A. Khodjamirian et al, JHEP11(2015)142 :

SM: Br(D * →e⁺e⁻) >= 5. × 10⁻¹⁹

New Physics with Z' : Br($D^* \rightarrow e^+e^-$) < 2.5 × 10⁻¹¹

for e+e- collider with $\int L = 1 \text{ fb}^{-1}$: Br(D* $\rightarrow e^+e^-$) > 4 × 10⁻¹³

They did estimation

But, they didn't take into account 10² - 10⁴ factor: detection efficiency and beam energy spread

See poster by D.Shemyakin

VEPP-2000 was able to jump above 2 GeV design machine limit:

<u>At 2017 scan: E=2007 M3B, L=3.4 πb⁻¹</u>

e+e- -> KK

CMD3: KsKl at φ - Best systematic precision 1.8%Phys.Lett.K+K-- syst 2%Phys.Lett.

Phys.Lett. B760 (2016) 314 Phys.Lett. B779 (2018) 64-71

27 February 2019

18

$\phi \rightarrow K+K$ - comparison between experiments

New CMD-3 cross-section is above CMD-2 and BaBar, but it is in consistency with isospin symmetry:

$$R = \frac{g_{\phi K + K -}}{g_{\phi K_{s} K_{L}} \sqrt{Z(m_{\phi})}} = 0.990 \pm 0.017$$

• $R_{SND} = 0.92 \pm 0.03(2.6\sigma)$

- $R_{CMD-2} = 0.943 \pm 0.013(4.4\sigma)$
- $R_{BaBar} = 0.972 \pm 0.017(1.5\sigma)$

27 February 2019

KKpi KKeta

Conclusion

× Precise low-energy e⁺e⁻ hadronic cross section data are needed to obtain an accurate SM prediction for $a_{\mu}^{had,LO-VP}$, $\alpha_{QED}(M_Z)$

× VEPP-2000 is only one working this days on direct scanning below <2 GeV for measurement of exclusive σ (e+e- \rightarrow hadrons)

× In 2013-2016 the VEPP-2000 collider and the detectors have been upgraded. The data taking was resumed in 2017.

* The VEPP-2000 results will help to reduce error of the hadronic contribution and it is independent cross-check of ISR data, future Lattice, space-like measurements

× Several previously unmeasured processes contributed to the total hadronic cross section ($e^+e^- \rightarrow \eta \pi^+\pi^-\pi^0$, $3(\pi^+\pi^-)\pi^0$) below 2 GeV have been studied. × We have goal to collect O(1) 1/fb in 5 years,

which should provide new precise results on the hadron production

27 February 2019

PhiPsi19, Novosibirsk

21

Talks and poster from CMD3 at PhiPsi19

An amplitude analysis of the e+e- \rightarrow 4 π reaction

The NNbar and multihadron production at the threshold at VEPP2000

Mr. Evgeny KOZYREV

Prof. Evgeny SOLODOV

Identification of the e+e-->n anti-n events in CMD-3 detector

Mr. Artem AMIRKHANOV

Luminosity measurement with the CMD-3 detector

STUDY OF PRODUCTION OF FOUR CHARGED PIONS WITH CMD-3 DETE CTOR AT VEPP-2000 COLLIDER

Search for the process e+e- -->D*0(2007) with the CMD-3 detector

Study of the e+e- $\rightarrow \pi + \pi - \gamma$ process at the CMD - 3

Study of the process \$e^+e^- \to K^+K^-\pi^0\$ with the CMD-3 detector

Study of the process \$e^+e^-{\to}K^+K^-\eta\$ with the CMD-3 detector at VEPP-2000 Mr. Vyacheslav IVANOV collider

Study of the process e+e- to KS KL piO up to 2 GeV with CMD-3 detector

Mr. Alexandr KOROBOV

Artem RYZHENENKOV

Mr. Dmitry SHEMYAKIN

Sergey TOLMACHEV Mr. Andrei EROFEEV

Mr. Semenov ALEKSANDR

27 February 2019

22

Exclusive channels under analysis

At VEPP-2000 we do exclusive measurement of σ (e+e- \rightarrow hadrons). \checkmark 2 charged

e+e-
$$\rightarrow \pi^+\pi^-$$
, K⁺K⁻, K_sK_L, pp

✓ 4 charged

$$e+e- \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}, K^{+}K^{-}\pi^{+}\pi^{-}, K_{s}K^{*}$$

✓ 4 charged + γ 's

 $e+e- \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\eta, \pi^{+}\pi^{-}\pi^{0}\eta, \pi^{+}\pi^{-}\omega, \pi^{+}\pi^{-}\pi^{0}\pi^{0}, K^{+}K^{-}\eta, K^{+}K^{-}\omega, \star^{0}$ 6 charged

 $e+e- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$

γ's only

$$e+e- \rightarrow \pi^0 \gamma$$
, $\eta \gamma$, $\pi^0 \pi^0 \gamma$, $\pi^0 \eta \gamma$, $\pi^0 \pi^0 \pi^0 \gamma$, $\pi^0 \pi^0 \eta \gamma$

✓ other

$$e+e- \rightarrow nn, \pi^0e+e-, \eta e+e-$$

27 February 2019

PhiPsi19, Novosibirsk

23

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$

First measurement of total $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ cross section. Systematic error is 11%.

Phys.Lett. B773 (2017) 150-158,arXiv:1706.06267v3

- ***** The intermediate states are wn, ϕ n, $a_0\rho$ and structureless $\pi^+\pi^-\pi^0$
- * The known $w\eta$ and $\phi\eta$ contributions explain about ~50% of the cross section below 1.8 GeV.
- ***** Above 1.8 GeV the dominant reaction mechanism is $a_0 p$

27 February 2019

2(π+π-)

See poster by A.Korobov

27 February 2019

25

SM prediction for muon g-2

Published results from 2011-2013: CMD-3

27 February 2019

$e+e- \rightarrow \pi+\pi-\pi+\pi-@\phi(1020)$

PLB 768 (2017) 345-350

2011-2013 data, 10 1/pb systematic error 3.5%

 $B(\varphi \to 2(\pi^{+}\pi^{-})) = (6.5 \pm 2.7 \pm 1.6) \times 10^{-6}$

27 February 2019

e+e- -> many pions with CMD-3

The dominated source of systematic error is model uncertainty(evaluation of the detector acceptance) High statistics allows for more accurate study of the intermediate dynamics.

 $3(\pi^{*}\pi^{-})$ are mainly produced through $\,\rho(770)$ + 4π (in phase space or $f_{_{0}})$

Seen change of dynamics in 1.7-1.9 GeV range Interesting feature: sharp dip at pp threshold (dip in sum of 6π roughly as pp+nn cross section)

27 February 2019

Comparison of $e + e - \rightarrow \pi + \pi - cross$ -section

0.2 --- CMD-2 SND 0 0.05 0 -0.05 -0.1 -0.15 -0.2 0.5 0.6 0.7 0.8 0.9 √s. GeV

In integral, there is reasonable agreement between existing data sets But there are local inconsistencies larger than claimed systematic errors \rightarrow additional scale factor for error of integral value

27 February 2019

Relative local weight of different experiments in π + π -

Nowadays the $\pi+\pi$ - data is statistically dominated by ISR(KLOE, BaBar)

Locally precision is limited by statistic

27 February 2019

PhiPsi19, Novosibirsk

31

The π + π - contribution to a_{μ}^{had}

MC generator, MCGPJ

Energy measurement by Compton back scattering

Starting from 2012, energy is monitored continuously using compton backscattering

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

26 June 2017, PHIPSI17, Mainz

CMD-3 Collaboration

Beam energy measurement at VEPP-2000

- Magnetic field control in bending magnets $\Delta E/E < 10^{-3}$
 - 8x2 NMR probes, continuous control
 - Absolute calibration using: φ-meson (1019.455 ± 0.020 M₃B), w-meson (782.65 ± 0.12 M₃B).
- Measurement of photon energy from back $\underline{\delta E/E < 10^{-4}}$ scattering laser light
 - Installed in 2012.
 - Needs beam current (20 MA), ~20-50 keV accuracy in 10 min
 - Energy control during data taking.

• Resonance depolarization method

<u>δΕ/Ε < 10-5</u>

- Very high accuracy.
- Special configuration of VEPP-2000: "warm" optics without CMD-3 field.

26 June 2017, PHIPSI17, Mainz

Methods comparison:

CMD-3 Collaboration