The XYZ mesons: what aren't they?

Beijing, CHINA

Stephen Lars Olsen

Daejeon, So KOREA

"Phi 2 Psi Workshop 2019 " BINP Novosibirsk, Feb. 26 – Mar. 1, 2019

What a difference twenty years make:

phi-psi1999 Novosibirsk

Temp:-30C

BESI physics results with 7M J/ ψ s, 4M ψ 's plus 85 continuum events:

- most precise measurement of m_{τ}
- --- $\rho\pi$ puzzle; ξ(2220)=glueball?; σ & κ mesons; ...
- --- improved R values (15-20)% \rightarrow (7-10)%: $a_{QED}(M_Z)$ for M_{Higgs} & (g-2)_µ for BNL831

phi-psi 2019 Novosibirsk

Temp:-3C

BESIII physics results with 1.3B J/ ψ , 450M ψ' events plus >100M continuum evts — most precise measurements of f & f (1)/18 1/11 m 1/ ψ & ψ' widths

- ---- most precise measurements of $f_D \& f_{Ds}$. ($|V_{cs}| \& |V_{cd}|$), m_{τ} , J/ $\psi \& \psi'$ widths, ...
- --- discoveries of $Z_c(3900) \& Z_c(4020); Y(4260) \rightarrow \gamma X(3872); X(3872) \rightarrow \pi^0 \chi_{c1}; ...$
- --- discovery of large Λ polarization in J/ $\psi \rightarrow \Lambda \overline{\Lambda}$; CPV search in $\Lambda \rightarrow \pi^- p/\overline{\Lambda} \rightarrow \pi^+ \overline{p}$
- --- anomalous threshold jumps for $e^+e^- \rightarrow \Lambda \overline{\Lambda} \& e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$ (ala SND (nn) & CMD(pp))
- --- anomalous X(1835) $\rightarrow \pi^+\pi^-\eta'$ lineshape at the e⁺e⁻ \rightarrow pp threshold
- $a_0(980) \leftrightarrow f_0(980)$ mixing

What a difference twenty years make:

phi-psi1999 Novosibirsk

Temp:-30C

BESI physics results with 7M J/ ψ s, 4M ψ 's plus 85 continuum events:

- most precise measurement of m_{τ}
- --- ρ π puzzle; ξ(2220)=glueball?; σ & κ mesons; ...
- improved R values (15-20)% \rightarrow (7-10)%: $a_{QED}(M_Z)$ for M_{Higgs} & (g-2)_µ for BNL831

phi-psi 2019 Novosibirsk

Temp:-3C

BESIII physics results with 1.3B J/ ψ , 450M ψ ' events plus >100M continuum evts — most precise measurements of f_D & f_{Ds}. ($|V_{cs}| \& |V_{cd}|$), m_{τ}, J/ $\psi \& \psi$ ' widths, ...

- --- discoveries of $Z_c(3900)$ & $Z_c(4020)$; Y(4260) $\rightarrow \gamma$ X(3872); X(3872) $\rightarrow \pi^0 \chi_{c1}$; ...
- --- discovery of large Λ polarization in J/ $\psi \rightarrow \Lambda \overline{\Lambda}$; CPV search in $\Lambda \rightarrow \pi^- p/\overline{\Lambda} \rightarrow \pi^+ \overline{p}$
- anomalous threshold jumps for $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ & $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$ (ala SND ($n\overline{n}$) & CMD($p\overline{p}$))
- ---- anomalous X(1835) $\rightarrow \pi^+\pi^-\eta'$ lineshape at the e⁺e⁻ \rightarrow pp threshold
- $a_0(980) \leftrightarrow f_0(980)$ mixing

— ...

Can't have enough J/ ψ s; at least 10T needed for CPV tests

What a difference twenty years make:

phi-psi1999 Novosibirsk

Temp:-30C

BESI physics results with 7M J/ ψ s, 4M ψ 's physics intinuum events: — most precise measurement of micle physics intinuum events: — $\rho\pi$ puzzle; $\xi(2220)=glue partice mesons; ...$ — improved R value (100), $\phi \rightarrow$ (7-10)%: $a_{QED}(M_Z)$ for M_{Higgs} & (g-2)_µ for BNL831 — ... ~ 50N, ψ s & 10M ψ 's will "close out" $E_{cm} < 2m_D$ physics

phi-psi 2019 Novosibirsk

Temp:-3C

BESIII physics results with 1.3B J/ ψ , 450M ψ' events physics of continuum evts — most precise measurements of $f_D \& f_{Ds}$ (1), $Q \& V_{cd}$), m_{τ} , J/ $\psi \& \psi'$ widths, ... — ultra precise R-values ((7-10)% \rightarrow ...) por LAL & J-PARC (g-2)_µ experiments — discoveries of Z_c(3900) & Z ($\chi \rho I$), (4260) $\rightarrow \gamma X(3872)$; X(3872) $\rightarrow \pi^0 \chi_{c1}$; ... — discovery of large ($\chi \rho I$) (4260) $\rightarrow \gamma X(3872)$; X(3872) $\rightarrow \pi^0 \chi_{c1}$; ... — discovery of large ($\chi \rho I$) (4260) $\rightarrow \gamma X(3872)$; CPV search in $\Lambda \rightarrow \pi^- p/\overline{\Lambda} \rightarrow \pi^+ \overline{p}$ — anomalous of Child jumps for e⁺e⁻ $\rightarrow \Lambda \overline{\Lambda} \& e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$ (ala SND (n \overline{n}) & CMD($p\overline{p}$)) — anomalous of (1835) $\rightarrow \pi^+\pi^-\eta'$ lineshape at the e⁺e⁻ $\rightarrow p\overline{p}$ threshold

- -- a₀(980) $\leftrightarrow \rightarrow$ f₀(980) mixing

Can't have enough J/ ψ s; at least 10T needed for CPV tests

some proposed interpretations of the XYZ mesons?

Constituent mesons should be narrower than the molecule

J^{PC} consistent with S-wave *e.g.*, $J^{PC} = 1^{++}$ for $D\overline{D}^{*}$; $=1^{--}$ for $D\overline{D}_{1}^{**}$

fall-apart decays >> hidden charm modes

no $0^- \oplus 0^-$ molecules (one π -exchange forbidden)

XYZ mesons vs open-charm thresholds

-- aside from the X(3872), no apparent correlation --

coupled-channel system

need a core $c\bar{c}$ state strongly coupled to an S-wave D^(*) $\overline{D}^{(*)}$ system

close to a $D^{(*)}\overline{D}^{(*)}$ mass threshold

Maiani et al.,, PRD 71, 014028 (2005)

compact & tightly bound by the color force: $BE = "\infty"$

since spin force ~ $1/m_0$, "bad" diquarks are not so bad

most masses and J^{PC} values are accessible for [cq][cq']

QCD is flavor blind (q=u,d,s) \therefore tetraquark states should come in octets

charmonium hybrids

ball bearing-like

Threshold effects

What are they?

What aren't they?

coupled channel system?

QCD tetraquarks?

QCD hybrids?

hadrocharmonium?

X(3872)

anything new?

BESIII: new production mode Y(4220) $\rightarrow \gamma$ X(3872); X(3872) $\rightarrow \pi^+\pi^-$ J/ ψ

combinatoric-free channel for X(3872) studies -- well suited for final states with $\gamma/\pi^0/\omega$ –

Y(4220) $\rightarrow \gamma$ X(3872); X(3872) $\rightarrow \pi^0 \chi_{cl}$; $\chi_{cl} \rightarrow \gamma J/\psi$

Y(4220)→γX(3872); X(3872)→ωJ/ψ

 $e^+e^- \rightarrow \gamma \pi^+ \pi^- \pi^0 J/\psi$

PDG2018: 0.8±0.3

See Esposito et al., PRD 92 034028 (2015)

CDF PRL 103 152001 (2009)

X(3872)=coupled channel state?

X(3872)

Produced promptly in HE pp collisions no isopspin-related states are seen

good description PTEP 9, 093D01 (2013)

PRD 71 014028 (2005) no 1⁺⁺ partner states seen

mass is 500 MeV below LQCD's lightest 1⁺⁺ hybrid

width is too narrow; mass too close to threshold

X(3915)

new production channel from BESIII

Y(4220)→γ**X(3915); X(3915)**→ωJ/ψ

no sign of X(3915) $\rightarrow D\overline{D}$ -- in either B \rightarrow KD \overline{D} or $\gamma\gamma \rightarrow D\overline{D}$ --

a J^{PC}=0⁺⁺ csc̄s̄ tetraquark?

no "fall-apart" decays to $\mathsf{D}\overline{\mathsf{D}}$

OZI-allowed decay processes:

ω has a small (\approx 3%) ss content

η has a large (≈40%) ss content

Expect:
$$\frac{Bf(X(3915)) \to \eta \eta_c}{Bf(X(S915)) \to \omega J / \psi} \gg 1$$

No sign of X(3915) $\rightarrow \eta_c \eta$

not good for a tetraquark interpretation

Y(4260)

Y(4260)→ππJ/ψ is 2 peaks -- one at ≈4220 MeV & one at ≈4320 MeV --

Y(4260)

DD₁(2460) BE (≈65 MeV) is very large -- but see PRD 90, 074039

no candidate cc state or nearby DD threshold -- but see PRD 94, 054035

[cq][c̄q] tetraquark
-- but no partner states have been identified

PLB 631 164 (2005) only ≈65 MeV below LQCD's lightest 1⁻⁻ hybrid

mass is below the only relevant threshold

What about the charged Z states?

Z(4430) found by Belle; confirmed by LHCb

-- (D*(2S)=radially excited D*?) --

"B.E." =
$$(m_{D^+} + m_{D^*(2S)}) - M_{Z(4430)} \approx 0 \pm 18 \text{ MeV}$$

Z(4430)

Z_b states discovered by Belle

Belle: PRL108, 232001 (2012)

Z_c states discovered by BESIII & Belle

 $Y(4260) \rightarrow \pi^+\pi^-h_c$

5.6 \pm 2.8 MeV above D*⁰D*⁻ thresh.

Not seen in B decays

Z_c states discovered by BESIII & Belle

Not seen in B decays

Scorecard

state	Molecule?	Coupled- channel	Tetraquark?	Hybrid?	Threshold effect?	Hadro- charmonium
X(3872)	problem with pp production	Yes	partners not seen	m≈500 MeV too low	narrow & at threshold	decays to both S- & P-wave cc
X(3915)	no 1- π exchange allowed	no cc core or DD thresh.	partners not seen	m≈500 MeV too low	below threshold	
Y (4260) (Y(4220))?	D⊕D ₁ (2420)? B.E.≈65 MeV	no cc̄ core or DD̄ thresh.	partner not seen	m≈65 MeV too low	no nearby threshold	decays to both S=1 & S=0 cc
Z(4430)	D⊕ D *(2S)? short lifetimes	no cc core state	partner not seen	electrically charged	below threshold	
Z _c (3900) Z _c (4020)	≈5 ме∨ <i>above</i> DD* (D*D*) threshold	no cc core state	partner not seen	electrically charged	need Argand plot	
Z ₁ (10610) Z ₂ (10650)	≈2ме∨ <i>above</i> BB* (B*B*) threshold	no cc core state	partner not seen	electrically charged	need Argand plot	

-- no single-size that fits all
-- only X(3872) has a clear assignment

Comments:

the X(3872) seems unique & not closely related to other XYZ states

QCD-tetraquarks can account for everything & predict nothing

a "deuson-like" bound molecule has not been seen

Y(4220) is the only XYZ hybrid possibility, but this assignment is very not compelling

Comments:

the X(3872) seems unique & not closely related to other XYZ states

QCD-tetraquarks can account for everytice predict nothing

a "deuson-like" bound me ocure has not been seen

Y(4220) is the only XYZ hybrid possibility, but this assignment is very not compelling

SCT or STCF as an XYZ factory

