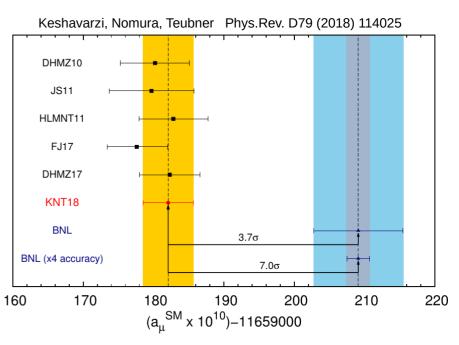


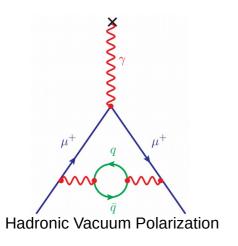
Hadronic and Transition Form Factor Measurements at **B€5I**

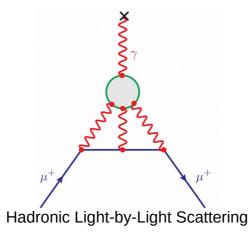
February 27, 2019 | Christoph Florian Redmer for the BESIII Collaboration

PhiPsi19 – 12th International Workshop on e⁺e⁻ Collisions from Phi to Psi, Novosibirsk


JG U Anomalous magnetic moment of the μ

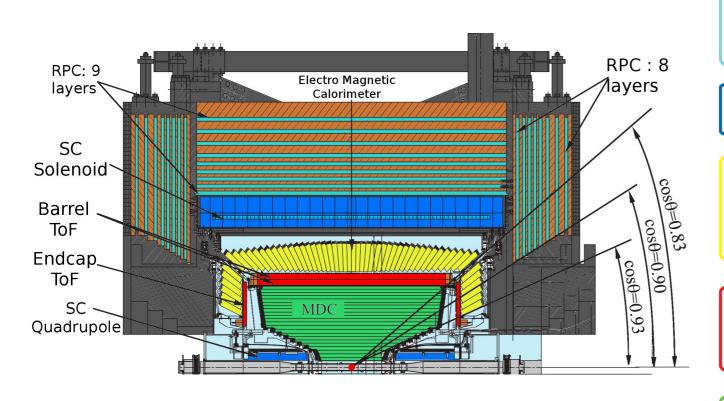
Muon anomaly:
$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$


Known to 0.5 ppm in theory and experiment


Standard Model (SM) (11659182.04 \pm 3.65) 10^{-10} Phys. Rev D97 (2018) 114025 Experiment (BNL) (11659208.9 \pm 6.3) 10^{-10} Phys. Rev. D73 (2006) 072003

- Discrepancy between SM prediction and measurement!
- New measurements at FermiLab and J-PARC
- Improvement of SM prediction necessary

Uncertainty of SM prediction completely limited by hadronic contributions!



Use input from experiments to improve SM prediction!

BESIII at BEPCII

NIM A614 (2010) 345

Muon Chambers

- 8 9 layers of RPC
- p>400 MeV/c
- $\delta R\Phi = 1.4 \sim 1.7 \text{ cm}$

Superconducting Magnet

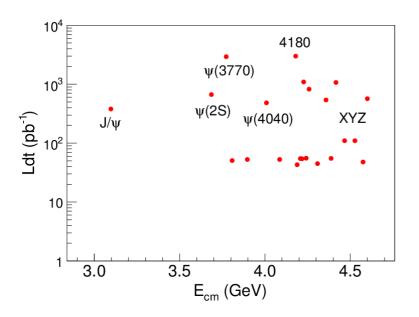
1 T magnetic field

EM Calorimeter (EMC)

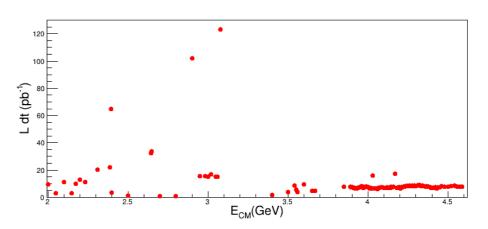
- 6240 CsI(TI) crystals
- $\sigma(E)/E = 2.5\%$
- $\sigma_{7,0}(E) = 0.5 0.7 \text{ cm}$

Time-of-flight system (TOF)

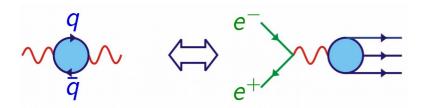
- $\sigma(t) = 90ps$ (barrel)
- $\sigma(t) = 110ps$ (endcap)


Drift Chamber

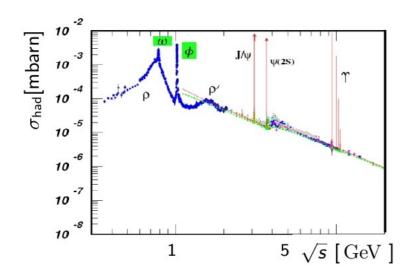
(MDC)


- $\sigma(p)/p = 0.5\%$
- $\sigma_{\text{dE/dx}} = 6.0\%$

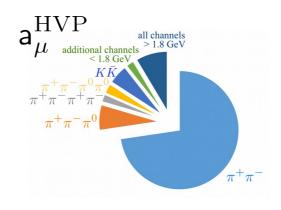
BESIII at BEPCII

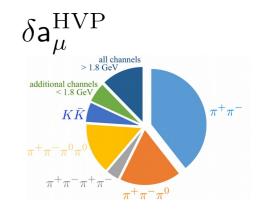


- Operated at BEPCII collider
 - $2.0 \le \sqrt{s} \; [GeV] \le 4.6$
 - Design luminosity achieved
 - $\mathcal{L} = 1.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1} \text{ at } \psi(3770)$
- Data taking for
 - Charmonium spectroscopy
 - Charm physics
 - Light hadrons
 - τ and R-scan

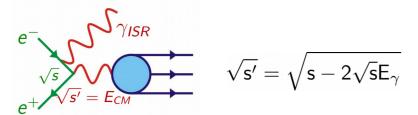

Hadronic Vacuum Polarization

Related to hadronic cross sections by optical theorem



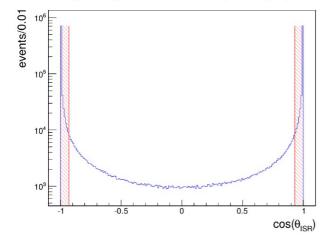

Dispersion integral:

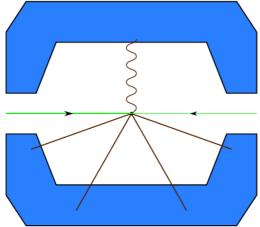
$$a_{\mu}^{hVP,LO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} K(s)\sigma(e^+e^- \to \text{hadr})ds$$



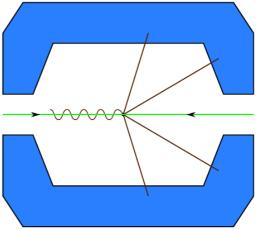
$$K(s) \sim \frac{1}{s}$$

$$\sigma(e^+e^- \to {\rm hadr}) \sim \frac{1}{s}$$
 Low energy contributions dominate !



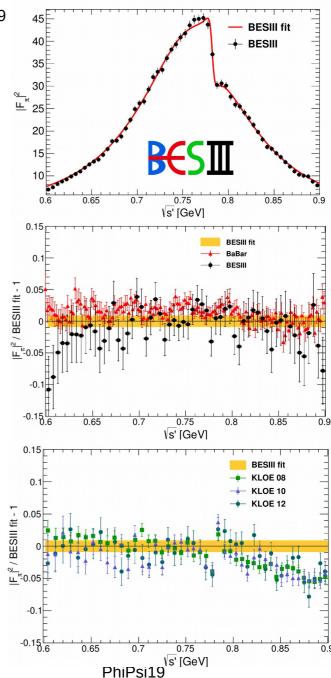

ISR Measurements at BESIII

polar angle distribution of ISR photons (MC)

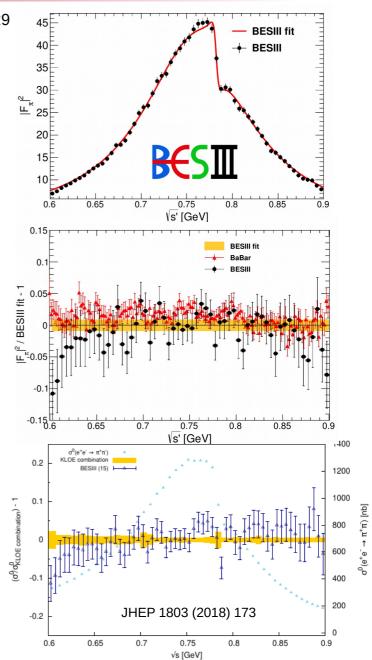


Tagged analysis

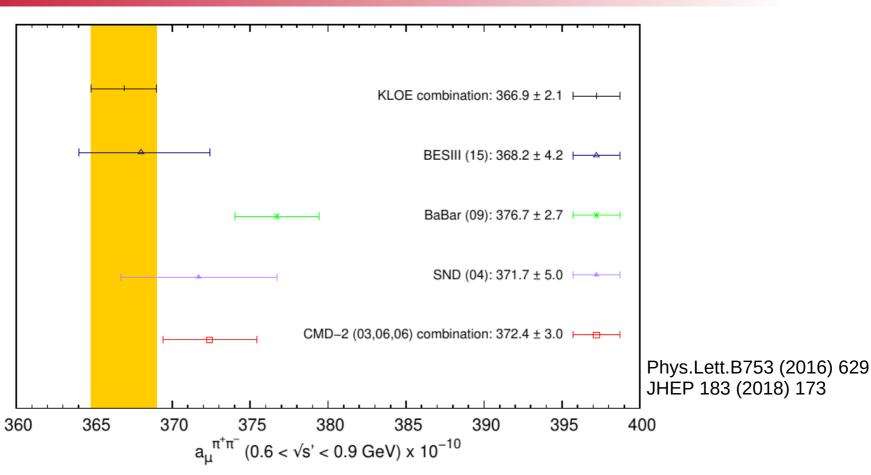
- Detect hadronic system
- ISR photon detected
 - Acceptance from $\pi^+\pi^-$ threshold
 - Large background contamination at high $\sqrt{s'}$
- ISR photon undetected
 - High statistics
 - Acceptance for $\sqrt{s'} > 1$ GeV
 - Small background contamination


Untagged analysis

Phys.Lett.B753 (2016) 629


- Tagged ISR technique
- Based on 2.9 fb⁻¹ at 3.773 GeV
- $-\mu \pi$ separation with Artificial Neural Network
- Focus on $0.6 \le m_{\pi\pi} \le 0.9$
- Normalized to integrated luminosity
- Careful evaluation of systematics
 - Total uncertainty of 0.9% achieved
 - Dominated by
 - Luminosity (0.5%)
 - Radiator function (0.5%)
- Deviations to previous measurements observed
- Ongoing activities
 - Extend analysis to new data sets
 - Investigate $m_{\pi\pi} \geq 1 \, \text{GeV}$
 - Untagged ISR analysis

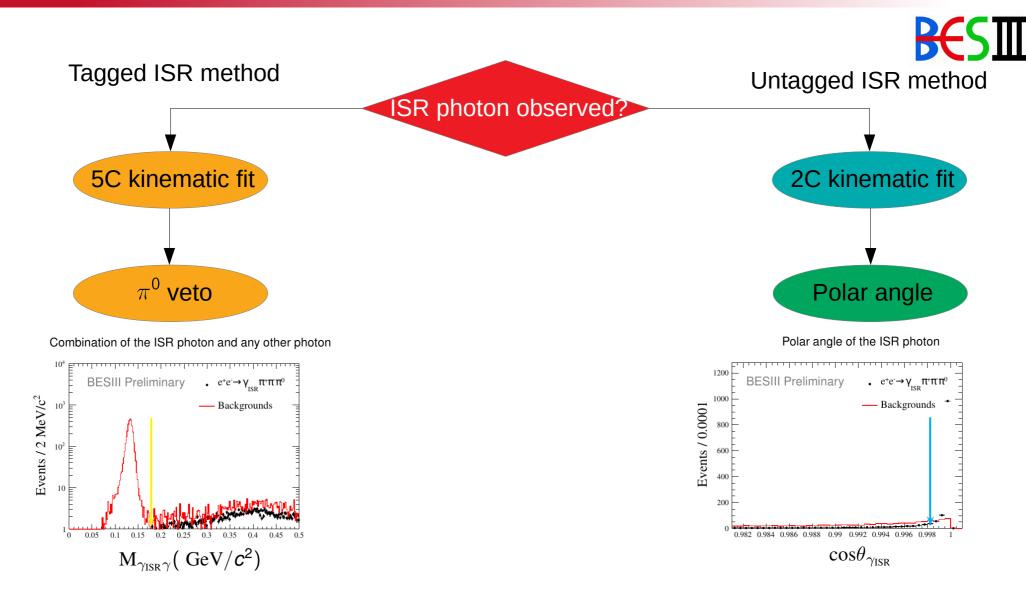
$$e^+e^- \rightarrow \pi^+\pi^-$$


Phys.Lett.B753 (2016) 629

- Tagged ISR technique
- Based on 2.9 fb⁻¹ at 3.773 GeV
- $-\mu \pi$ separation with Artificial Neural Network
- Focus on $0.6 \le m_{\pi\pi} \le 0.9$
- Normalized to integrated luminosity
- Careful evaluation of systematics
 - Total uncertainty of 0.9% achieved
 - Dominated by
 - Luminosity (0.5%)
 - Radiator function (0.5%)
- Deviations to previous measurements observed
- Ongoing activities
 - Extend analysis to new data sets
 - Investigate $m_{\pi\pi} \geq 1 \, \text{GeV}$
 - Untagged ISR analysis

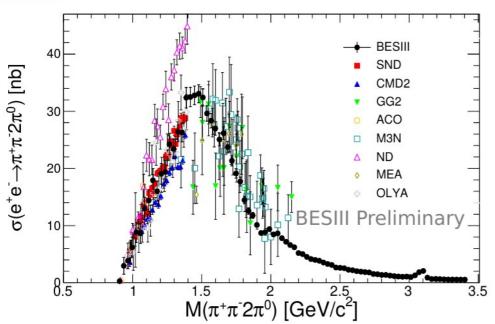
PhiPsi19

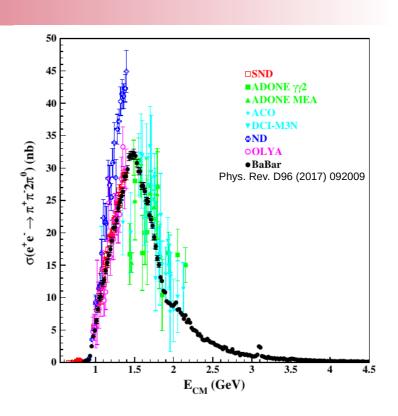
$e^+e^- \rightarrow \pi^+\pi^-$



- Precision competitive to measurements by BaBar and KLOE
- Good agreement with all KLOE results
- BESIII result confirms $a_{\mu}^{\rm theo,SM} a_{\mu}^{\rm exp} > 3\sigma$
- Reevaluations of a_{μ}^{hVP} including BESIII result improve accuracy by 20%

EPJ C77 (2017), 820


Higher pion multiplicities

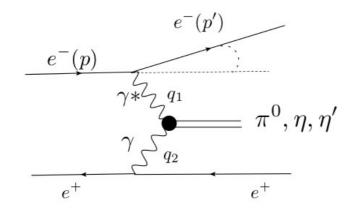


Scheme successfully applied to measure $e^+e^- \to \pi^+\pi^-\pi^0/\pi^+\pi^-2\pi^0/\pi^+\pi^-3\pi^0$!

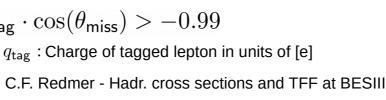
$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$$

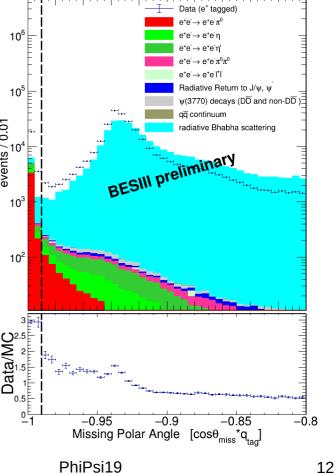
- Error weighted mean of tagged and untagged results
- Good agreement with BaBar measurement
- Improved precision (approx. 3% syst. uncertainty)

$$a_{\mu}^{\pi^+\pi^-2\pi^0,\mathsf{LO}} = rac{1}{4\pi^3} \int\limits_{(4m_\pi)^2}^{(1.8\,\mathsf{GeV})^2} ds\, K(s) \sigma_{\pi^+\pi^-2\pi^0}(s)$$


	$a_{\mu}^{\pi^+\pi^-2\pi^0, { m LO}}/10^{-10}$
BESIII (preliminary)	$18.63 \pm 0.27 \pm 0.57$
BABAR	$17.9 \pm 0.1 \pm 0.6$

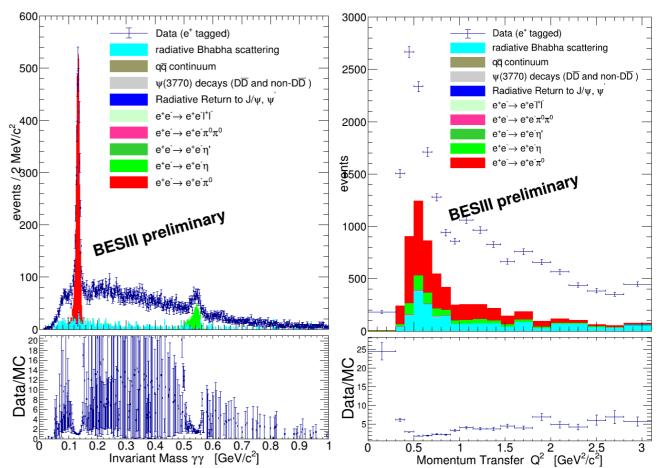
Two-photon Physics




- Transition form factors (TFF) as input for HLbL calculations
- \blacksquare Cross section of $\gamma\gamma$ processes proportional to square of TFF
- Single-tagged measurements to study momentum dependence of TFFs

- Reconstruct:
 - only one scattered lepton
 - produced system
 - unmeasured lepton from momentum conservation
- Require scattering angle of missing momentum to be small
 - Small virtuality of exchanged photon
 - $F(Q_1^2, Q_2^2) \to F(Q_1^2, 0)$

Reject events with $q_{\mathsf{tag}} \cdot \cos(\theta_{\mathsf{miss}}) > -0.99$

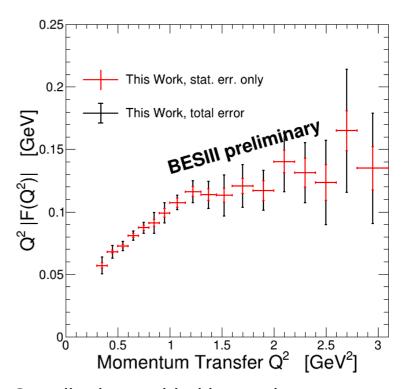


G U Space-like π^0 Transition Form Factor

- Based on 2.9 fb⁻¹ at 3.773 GeV
- Select:
 - Exactly one lepton
 - At least two photons
- Apply:
 - Single-tag condition
 - Helicity angle of photons

- lacktriangle Clear signals of π^0 and η
- Incomplete MC description
 - Data-driven background subtraction

Divide out point-like cross section using MC distributions


JG U Space-like π⁰ Transition Form Factor

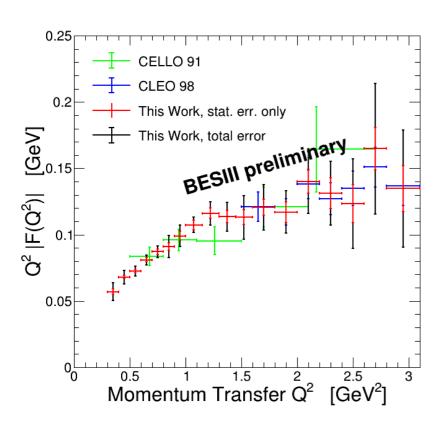
Systematic Uncertainties of $|F(Q^2)|$

Error propagation: $\Delta F(Q^2) _i$	$= \frac{1}{2} \frac{1}{\sqrt{(F(Q^2) ^2)}} \Delta(F(Q^2) ^2)_i$
Error propagation. $\Delta T(Q) _i$	$-\frac{1}{2}\frac{1}{\sqrt{(F(Q^2) ^2)}}\Delta(F(Q^2) ^2)i$

	Source	Contribution
External	Tracking efficiency	0.25%
	Photon detection efficiency	1%
	Luminosity	0.25%
Analysis	$q_{tag} \cdot \cos \theta_{miss} < -0.99$	0.1% - 3.1%
	$\cos \theta_{H} < 0.8$	0.2% - 4.5%
	$ \Delta\phi_{\gamma\gamma} <\frac{\pi}{2}$	negligible
	$ \Delta\theta_{\gamma\gamma} - 0.01q_{tag} > 0.02$	0.3% - 9.8%
	$R_{\gamma} < 0.05$	1.0% - 7.7%
	Reconstruction efficiency	1.6% - 17.2%
Background subtraction	Signal shape	0.1% - 1.9%
	Event counting	0.1% - 11.1%
	Background shape	0.2% - 21.0%
Total		3.9% - 30.0%

- Contributions added in quadrature
- Full correlation between contributions of analysis conditions and background subtraction assumed

Error estimate does not consider radiative effects

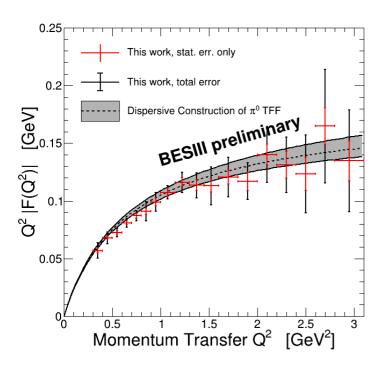

■ To be evaluated with recently released Ekhara 3.0

Comp. Phys. Commun. 234 (2019) 245

Space-like π⁰ Transition Form Factor

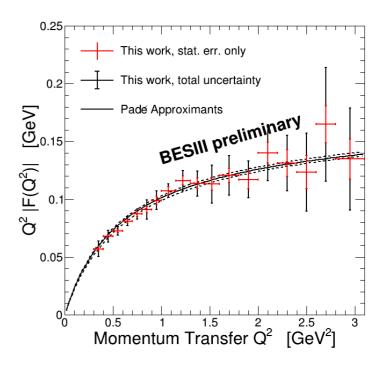
Comparison to previous measurements

- First measurement below 0.5 GeV²
- Unprecedented accuracy below Q²=1.5 GeV²
- Competitive accuracy up to 3.1 GeV²


CELLO: Z. Phys. C49 (1991) 401 CLEO: Phys. Rev. D57 (1998) 33

Space-like π⁰ Transition Form Factor

Comparison to Theory

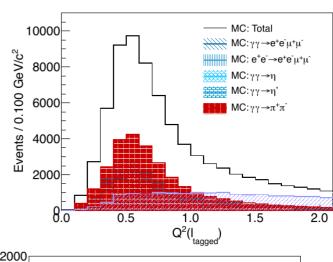


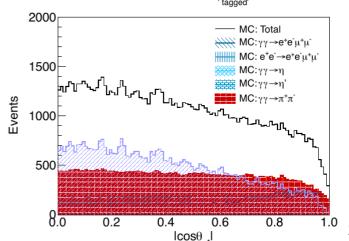
Data-driven Approaches:

 Construction of space-like TFF using time-like experimental results in dispersive calculations

Hoferichter et al., Phys. Rev. Lett 121 (2018) 112002

- Fit previous measurements with Padé approximants Masjuan et al., Phys. Rev. D86, 094021
 - Model independent (mathematical technique)
 - Provides estimate of systematic uncertainties


First HLbL estimate including these data: Danilkin, CFR, Vanderhaeghen arxiv:1901.10346


JG U Space-like π⁺π⁻ Transition Form Factor

Single-Tag measurement

- Event selection analogous to single pseudoscalar analysis
- Multivariate methods to suppress muon background $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
- Subtraction of ρ contribution in $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
 - Fit peak in data using shape from theory
- Study $\pi^+\pi^-$ invariant mass in bins of Q² and cos θ^*
- First single-tag measurement of $\pi^+\pi^-$!
 - Access to:
 - low momentum transfers 0.2 < Q² [GeV²] < 2.0
 - low invariant masses $m_{\pi+\pi}$ < M [GeV] < 2.0
 - full coverage of cosθ*

Outlook

- Single-tagged measurements
 - Complete TFF studies of single mesons (η, η')
 - **Extend two-meson studies to neutral channels** $(\pi^0\pi^0, \pi^0\eta, \eta\eta)$
 - Investigate higher multiplicity final states $(3\pi, 4\pi, ...)$
 - Axial and tensor contributions to a_μ
- Double-tagged measurements
 - Complementary to BaBar measurement of η' TFF
 - Cover all single pseudoscalar states for Q² < 2 GeV²
 - Feasibility studies successful
 - Development and installation of dedicated taggers

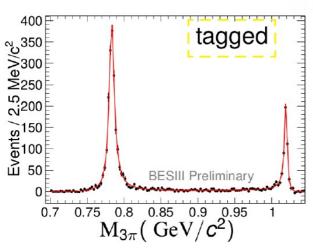
Summary

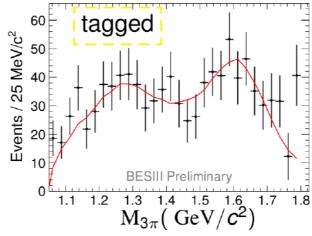
BESIT

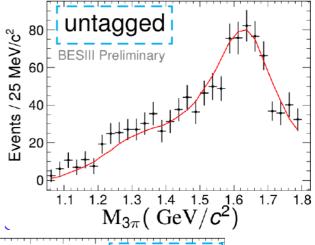
BESIII is a perfect laboratory for hadron physics!

- Hadronic cross section measurements with ISR
 - Information from hadronic threshold to tau-charm region
 - Competitive accuracy
 - $\pi^+\pi^-$ result confirms $a_\mu^{theo,SM}-a_\mu^{exp}>3\sigma$, extending investigations to $m_{\pi\pi}\geq 1\,\text{GeV}$
 - Preliminary results on $e^+e^- \rightarrow \pi^+\pi^-\pi^0, e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$
- Two-photon physics program
 - Single-tag measurements
 - π^0 , η , and η' transition form factors with unprecedented accuracy (Q² < 1.5 GeV²)
 - π□π□, π⁰π⁰, π⁰η, ηη
 - First measurement at low Q²
 - Covers masses from threshold and the full helicity angle
 - First double-tagged measurement $\gamma^* \gamma^* \to \pi^0$ started

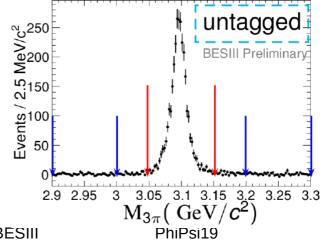
Backup

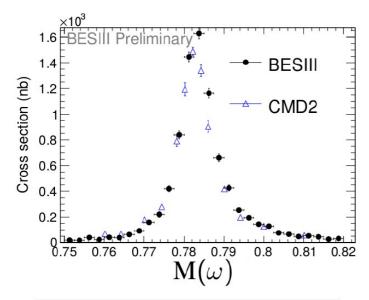

$$e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}$$

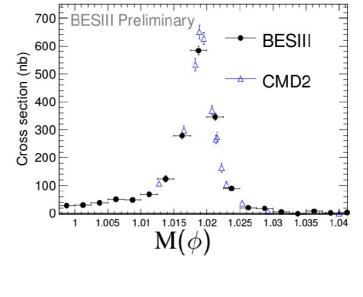

 $\pi^+\pi^-\pi^0$ invariant mass spectra

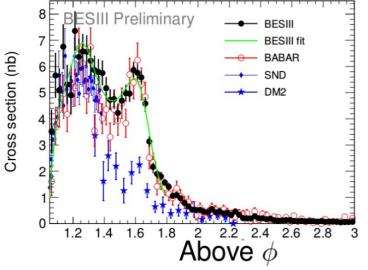

Below 1.8 GeV: Fit

$$\frac{\mathsf{dN}}{\mathsf{dm}} = \sigma(\mathsf{m}) \cdot \frac{\mathsf{dL}}{\mathsf{dm}} \cdot \varepsilon$$

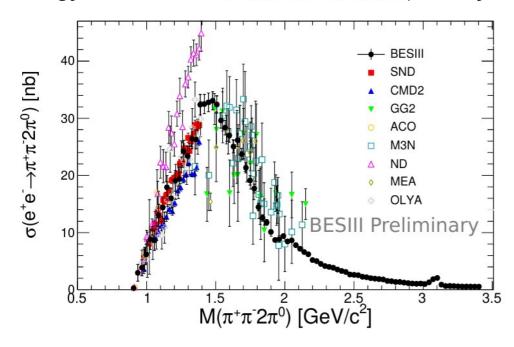

$$\sigma(\mathbf{m}) = \frac{12\pi}{\mathsf{m}^3} \mathsf{F}_{\rho\pi}(\mathbf{m}) \left| \sum_{\mathsf{V} = \omega, \phi, \omega', \omega''} \frac{\mathsf{\Gamma}_{\mathsf{V}} \mathsf{m}_{\mathsf{V}}^{\frac{3}{2}} \sqrt{\mathsf{\Gamma}_{\mathsf{V}}^{\mathsf{ee}} \mathcal{B}(\mathsf{V} \to 3\pi)}}{\mathsf{D}_{\mathsf{V}}(\mathbf{m})} \frac{\mathrm{e}^{\mathrm{i}\varphi \mathsf{V}}}{\sqrt{\mathsf{F}_{\rho\pi}(\mathsf{m}_{\mathsf{V}})}} \right|$$






■ Above 3 GeV: Determine $\mathcal{B}(J/\psi \to \pi^+\pi^-\pi^0)$

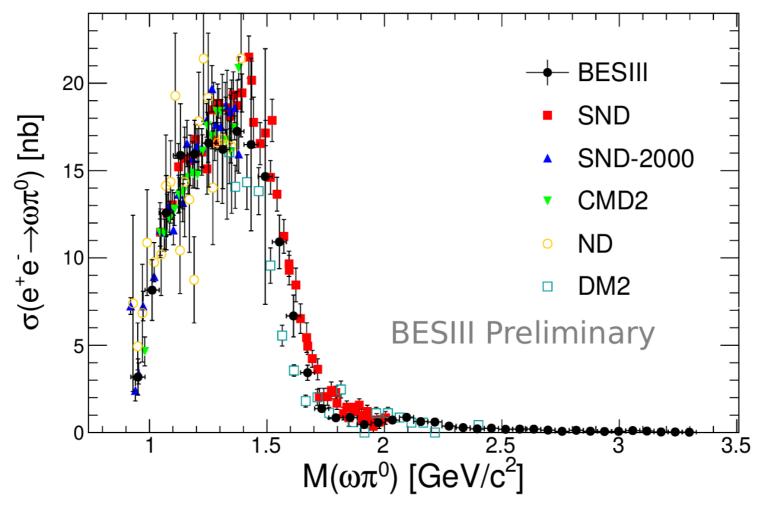
$e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}$



- Good agreement with previous measurements
- Improved precision
 - ~ 3% syst. uncertainty in full mass range
 - < 2% at narrow resonances</p>
- lacktriangle Confirms BaBar result at ω''
- To be used to evaluate a_{μ}^{hVP}

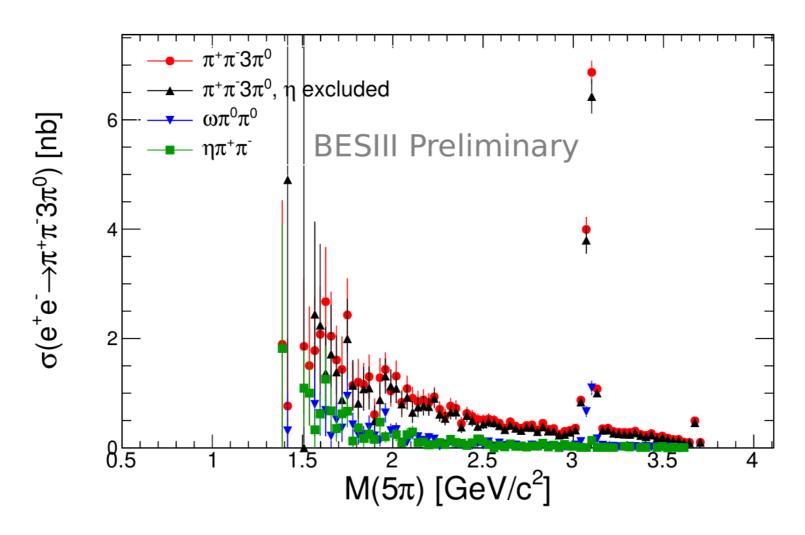
$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$$

Strategy similar to $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$ analysis


- Error weighted mean of tagged and untagged results
- Good agreement with previous measurements
- Improved precision (approx. 3% syst. uncertainty)

$$a_{\mu}^{\pi^+\pi^-2\pi^0,\mathsf{LO}} = rac{1}{4\pi^3} \int\limits_{(4m_\pi)^2}^{(1.8\,\mathsf{GeV})^2} ds\, K(s) \sigma_{\pi^+\pi^-2\pi^0}(s)$$

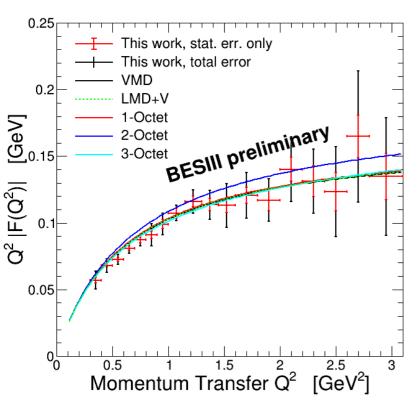
	$a_{\mu}^{\pi^+\pi^-2\pi^0, {\sf LO}}/10^{-10}$
BESIII (preliminary)	$18.63 \pm 0.27 \pm 0.57$
(. 37	


$$\mathrm{e^+e^-} \rightarrow \omega \pi^0$$

- Fit ω signal on smooth background in every bin of $M_{\pi^+\pi^-\pi^0\pi^0}$
- Approx. 4% syst. uncertainty
- Good agreement with previous measurements

February 27, 2019

JG U $e^+e^- \to \pi^+\pi^-\pi^0\pi^0\pi^0$


- From background evaluation of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$
- Good agreement calculations using isospin relations

Space-like π⁰ Transition Form Factor

Comparison to Theory (I)

BESI

Models:

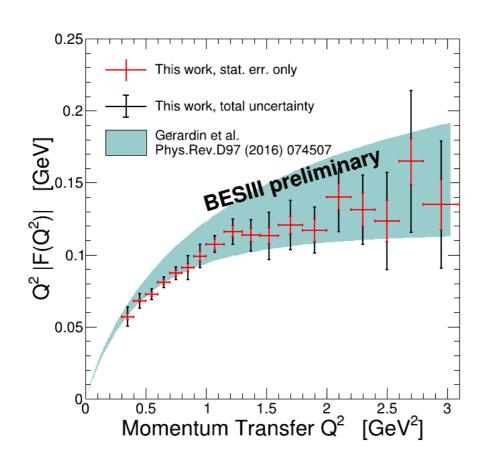
$$F_{\text{VMD}}(Q^2) = -\frac{N_c}{12\pi^2 F_\pi} \frac{M_V^2}{M_V^2 + Q^2}$$

$$F_{\rm LMD+V}(Q^2) = -\frac{F_\pi}{3} \frac{h_1 Q^4 - h_5 Q^2 + h_7}{(M_{V1}^2 + Q^2)(M_{V1}^2 + Q^2)M_{V1}^2 M_{V2}^2}$$
Knocht Nyffolor Phys. Rev. D65 (2)

Knecht, Nyffeler Phys. Rev. D65 (2002) 073034

$$F_{\rm n=1,2-Octet}(Q^2) = -\frac{N_c}{12\pi^2 F_\pi} + \sum_{i=1}^n \frac{4\sqrt{2}h_{Vi}f_{Vi}}{3F_\pi}Q^2(D_{\rho_i} - D_{\omega_i})$$
 Czyz et al. Phys. Rev. D55 (2012) 094010

$$F_{3-{\rm Octet}}(Q^2) = -\frac{N_c}{12\pi^2 F_\pi} + \sum_{i=1}^3 \frac{4\sqrt{2}h_{V\,i}f_{V\,i}}{3F_\pi}Q^2(D_{\rho_i} + F_{\omega_i}H_{\omega_i}D_{\omega_i} + A_i^{\pi^0}F_{\phi_i}D_{\phi_i})$$
 Czyz et al. Phys. Rev. D97 (2018) 016006


Parameters of models fixed according to publications

Space-like π⁰ Transition Form Factor

Comparison to Theory (III)

Lattice QCD:

