Light mesons from JPAC+COMPASS analyses

Misha Mikhasenko

Joint Physics Analysis Center, COMPASS @ CERN, CERN, Switzerland

> PsiPhi 2019 Adkademgorodok

> > 27.02.2019

Contents

Introduction

- JPAC Collaboration
- Challenges of hadron spectroscopy

2 $\eta^{(\prime)}\pi$ analyses

- COMPASS data
- Method to extract resonance properties
- Coupled-channel analysis

3 Three-pions physics

- COMPASS PWA
- Deck mechanism
- Data for the 1^{++} sector
- Analysis of τ -data

Summary

Introduction

Introduction

IPAC Collaboration

Joint Physics Analysis Center

Emilie Passemar Andrew Jackura Nathan Sherrill Tim Londergan Indiana U Indiana U. Indiana U. Indiana U

Astrid Hiller Blin Misha Mikhasenko VM Jannes Nys Adam Szczepaniak Mainz U. Bonn U. JLab Ghent U Indiana U

Łukasz Bibrzycki Cracow P. U.

Arkaitz Rodas Bilbao Madrid U.

Viktor Mokeev JLab

Cesar Fernández-Ramírez UNAM

Alessandro Pilloni JLab → ECT*

Miquel Albaladeio JLab

Collaboration of theoreticians and experimentalists

Amplitude analysis

- Writting amplitudes using general QFT constraints
- Analysis of experimental data
- Analytic continuation, pole search

Collaboration of theoreticians and experimentalists

Amplitude analysis

- Writting amplitudes using general QFT constraints
- Analysis of experimental data
- Analytic continuation, pole search

General properties of the scattering amplitude

 $\label{eq:analyticity} Analyticity + Unitary + Crossing \ symmetry$

- Scattering amplitude is an analytic function in $s = E^2$ complex plane,
- $\bullet\,$ The Real axis $\rightarrow\,$ physical world,
- Resonances = poles of the unphysical sheet.

Collaboration of theoreticians and experimentalists

Amplitude analysis

- Writting amplitudes using general QFT constraints
- Analysis of experimental data
- Analytic continuation, pole search

General properties of the scattering amplitude

 $\label{eq:analyticity} Analyticity + Unitary + Crossing \ symmetry$

- Scattering amplitude is an analytic function in $s = E^2$ complex plane,
- The Real axis \rightarrow physical world,
- Resonances = poles of the unphysical sheet.

Collaboration of theoreticians and experimentalists

Amplitude analysis

- Writting amplitudes using general QFT constraints
- Analysis of experimental data
- Analytic continuation, pole search

General properties of the scattering amplitude

 $\label{eq:analyticity} Analyticity + Unitary + Crossing \ symmetry$

- Scattering amplitude is an analytic function in $s = E^2$ complex plane,
- $\bullet\,$ The Real axis $\to\,$ physical world,
- Resonances = poles of the unphysical sheet.

Two regimes of scattering

Hadronic duality

[V.Mathieu, et al., PRD92 (2015), 074004]

Two regimes of scattering

Hadronic duality

[V.Mathieu,et al.,PRD92 (2015), 074004]

Challenges of hadron spectroscopy

Hadronic excitations

Results of lattice QCD

Hadronic excitations

Results of lattice QCD

[Dudek et al., PRD 88, 094505 (2013)]

$\eta^{(\prime)}\pi$ analyses

[(COMPASS) PLB 740 (2015) 303]

[(COMPASS) PLB 740 (2015) 303]

$\eta^{(\prime)}\pi$ partial wave analysis

Two-main contribution: *P*- and *D*-waves

[(COMPASS) PLB 740 (2015) 303]

PDG status: exotic π_1 states

Two candidates

$\pi_1(1400)$ $I^G(J^{PC}) = 1^-(1^{-+})$

See also the mini-review under non- q q candidates in PDG 2006, Journal of Physics G33 1 (2006).

π ₁ (1400) MASS		1354 ± 25 MeV (S = 1.8)	1354 ± 25 MeV (S = 1.8)				
π ₁ (1400) WIDTH		$330\pm35\text{MeV}$					
Decay	Modes						
Mode		Fraction (Γ_i / Γ) Scal	e Factor/ P f. Level (MeV/c)				
Γ_1	$\eta \pi^0$	seen	557				
Γ_2	$\eta \pi^-$	seen	556				
Γ3	η'π		318				

$\pi_1(1600)$ $I^G(J^{PC}) = 1^-(1^{-+})$

π ₁ (1600) MASS π ₁ (1600) WIDTH Decay Modes		1662_9 MeV	1662 ⁺⁸ MeV			
		241 ± 40 MCV (0 = 1.4)				
Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P (MeV/c)		
Γ_1	ллл	seen		803		
Γ_2	$\rho^0 \pi^-$	seen		641		
Γ_3	$f_2(1270)\pi^-$	not seen		318		
Γ_4	$b_1(1235)\pi$	seen		357		
Γ_5	$\eta'(958)\pi^-$	seen		543		
Γ_6	$f_1(1285)\pi$	seen		314		

Amplitude for $\eta\pi$ production

[A.Jackura,MM,A.Pilloni,et al. (JPAC-COMPASS),

PLB779, 464-472]

N-over-D method

Scattering amplitude: $\eta \pi \rightarrow \eta \pi$, *D*-wave

Production amplitude: $\pi \mathbb{P} \rightarrow \eta \pi$, *D*-wave

 D(s) is universal, has only the right-hand cut.
 N(s) and n(s) have the left-hand cut only (exchanges) M. Mikhasenko (CERN) Light mesons from JPAC+COMPASS analyses

Coupled-channel amplitude [A.Rodas,A.Pilloni,MM,et al. (JPAC), PRL122 (2019)] Scattering amplitude: $\eta^{(\prime)}\pi \rightarrow \eta^{(\prime)}\pi$, P/D-waves

$$\rho N_{ki}^{J}(s') = \delta_{ki} \frac{(p_{\eta^{(\prime)}\pi} \sqrt{s}/2)^{2J+1}}{(s'+s_L)^{2J+1+\alpha}},$$

• 2 K-matrix pole for D-wave

 $T = \frac{N(s)}{D(s)}$

- 1 K-matrix pole for P-wave
- Production amplitude: $\pi \mathbb{P} \to \eta^{(\prime)} \pi$, P/D-waves

$$a = \frac{n(s)}{D(s)}$$

$$a_i^J(s) = q^{J-1}p_i^J \sum_k n_k^J(s) \left[D^J(s)^{-1} \right]_{ki}$$

 $D_{ki}^{J}(s) = \left[K^{J}(s)^{-1}\right]_{ki} - \frac{s}{\pi} \int_{s_{i}}^{\infty} ds' \frac{\rho N_{ki}^{J}(s')}{s'(s'-s-i\epsilon)}.$

- left poles to model unknown production function *n*(*s*)
- D(s) has only the right-hand cut.
- N(s) and n(s) have the left-hand cut only (exchanges)

Fit to the data

[A.Rodas, A.Pilloni, MM, et al. (JPAC), PRL122 (2019)]

$\chi^2/\mathrm{ndf} = 162/122$, the band - 2σ bootstrap error

D-wave difference

- Kinematics $(m_{n'} > m_n)$
- \Rightarrow Same amplitude.

P-wave difference

- production mechanism
- + kinematics.

Results: pole positions

[A.Rodas, A.Pilloni, MM, et al. (JPAC), PRL122 (2019)]

• Change parametrization of the denominator $\rho N_{ki}^{J}(s') = \delta_{ki} \frac{(\rho_{\eta(\prime)} \sqrt{s}/2)^{2J+1}}{(s'+s_{i})^{2J+1+\alpha}}$,

- ▶ $s_R = 1 \text{ GeV} \to 0.8, 1.8 \text{ GeV}.$
- $\alpha = 2 \rightarrow 1 \text{GeV}.$
- Different function, $\rho N_{ki}^J(s') = \delta_{ki} Q_J(z_{s'}) s'^{-\alpha} \lambda^{-1/2}(s', m_{\eta^{(\prime)}}^2, m_{\pi}^2)$
- Change of parameters in the numerator n(s)
 - Effective transferred momentum $t_{\rm eff} = -0.1\,{\rm GeV}^2$ \rightarrow $-0.5\,{\rm GeV}^2$.
 - Order of the polynomial 3rd-order \rightarrow 4th-order.

Same π_1 as in 3π ?

[See a talk of B.Ketzer, afternoon]

The COMPASS fit:

- Signal by BW amplitude
- Flexible background

Consistent results on $\pi_1(1600)$ pole:

- $\rho\pi$ Breit-Wigner parameters \Rightarrow pole position
- $\eta^{(\prime)}\pi$ systematic margins

Three-pions physics

Three-pions physics

Diffractive production of 3π off proton target

-1.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 $m_{3\pi}$ (GeV)

The high-energy exchange processes penetrate to the low energy and make resonance characterization difficult

Three-pions physics

Diffractive production of 3π off proton target

[COMPASS data, MM, PhD thesis]

The high-energy exchange processes penetrate to the low energy and make resonance characterization difficult

Model for the forward scattering [MM, A.Jackur

[MM, A.Jackura (JPAC) in preparation]

Deck effect

• Two diagrams (π^- symmetrization)

$$\mathcal{B}_{\lambda\lambda'}=\mathcal{B}^{(1)}_{\lambda\lambda'}+\mathcal{B}^{(3)}_{\lambda\lambda'}$$

- High energy $p\pi$ scattering
- $\pi\pi$ scattering dominated by resonances in lower partial waves
 - ▶ Relative strength of *S*, *P*, *D*-waves is controlled by unitarity

$$\mathcal{B}^{(1)} = s_{\pi\rho}F(t) \frac{\mathrm{FF}(t_1)}{m_{\pi}^2 - t_1} \left[\frac{2}{3} t^{(\sigma_1, f_0)}(\sigma_1) + 3 t^{(\rho)}(\sigma_1, t_1)P_1(\cos \theta_{\pi\pi}) + \frac{10}{3} t^{(f_2)}(\sigma_1, t_1)P_2(\cos \theta_{\pi\pi}) \right].$$

Pion propagator: • Standard Deck 1

[MM PhD thesis]

$\frac{1}{m_\pi^2-t_1},$

Regge Deck

$$\frac{e^{-i\pi\alpha(t_1)/2}}{m_\pi^2-t_1}\left(\frac{s'-u'}{2s_{\rm sc}}\right)^{\alpha(t_1)}$$

Form-factored Deck

$$\frac{e^{bt_1}}{m_\pi^2-t_1},$$

$a_1(1260)$ state – isospin parter of ρ $a_1(1260)$ WIDTH

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
250 to 600	OUR ESTIMATE					
$\textbf{389} \pm \textbf{29}$	389 ± 29 OUR AVERAGE Error includes scale factor of 1.3.					
$430 \pm 24 \pm 31$			DARGENT	2017	RVUE	$D^0 ightarrow \pi^-\pi^+\pi^-\pi^+$
$367 \pm 9 {}^{+28}_{-25}$	420k		ALEKSEEV	2010	COMP	190 $\pi^- ightarrow \pi^- \pi^- \pi^+ P b^{'}$
••• We do not use the following data for averages, fits, limits, etc. •••						
$410 \pm \! 31 \pm \! 30$		1	AUBERT	2007AU	BABR	10.6 $e^+~e^- ightarrow ho^0 ho^\pm\pi^\mp\gamma$
520 - 680	6360	2	LINK	2007A	FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$
480 ± 20		3	GOMEZ-DUMM	2004	RVUE	$ au^+ ightarrow \pi^+\pi^+\pi^- u_ au$
580 ± 41	90k		SALVINI	2004	OBLX	$\overline{p} \ p ightarrow 2 \ \pi^+ 2 \ \pi^-$
460 ± 85	205	4	DRUTSKOY	2002	BELL	$B^{(*)} K^{-} K^{*0}$
$814 \pm 36 \pm 13$	37k	5	ASNER	2000	CLE2	$10.6 e^+ e^- o au^+ au^-$, $ au^- o \pi^- \pi^0 \pi^0 u_ au$

$a_1(1260)$ state – isospin parter of ρ $a_1(1260)$ WIDTH

\sim							
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT			
250 to 600	OUR ESTIMATE						
389 ± 29	OUR AVERAGE Erro	or includes scale factor o	of 1.3.				
$430 \pm 24 \pm 31$		DARGENT	2017 RVUE	$D^0 o \pi^-\pi^+\pi^-\pi^+$			
$367 \pm 9 \ ^{+28}_{-25}$	420k	ALEKSEEV	2010 COMP	190 $\pi^- ightarrow \pi^- \pi^- \pi^+ P b^{\prime}$			
••• We do not u	••• We do not use the following data for averages, fits, limits, etc. •••						
$410 \pm \!\! 31 \pm \!\! 30$		1 AUBERT	2007AU BABR	10.6 $e^+~e^- ightarrow ho^0 ho^\pm\pi^\mp\gamma$			
520 - 680	6360	2 LINK	2007A FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$			
480 ± 20		3 GOMEZ-DUMM	2004 RVUE	$ au^+ ightarrow \pi^+\pi^+\pi^- u_ au$			
580 ± 41	90k	SALVINI	2004 OBLX	$\overline{p} \hspace{0.1 cm} p ightarrow 2 \hspace{0.1 cm} \pi^+ 2 \hspace{0.1 cm} \pi^-$			
460 ± 85	205	4 DRUTSKOY	2002 BELL	$B^{(*)} K^{-} K^{*0}$			
$814 \pm 36 \pm 13$	37k	5 ASNER	2000 CLE2	$10.6 \; e^+ \; e^- ightarrow au^+ au^-$, $ au^- ightarrow \pi^0 \pi^0 u_ au$			

$a_1(1260)$ state – isospin parter of ρ $a_1(1260)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
250 to 600	OUR ESTIMATE						
389 ± 29	OUR AVERAGE Error	r includes scale factor	of 1.3.				
$430 \pm 24 \pm 31$		DARGENT	2017	RVUE	$D^0 o \pi^- \pi^+ \pi^- \pi^+$		
$367 \pm 9 {}^{+28}_{-25}$	420k	ALEKSEEV	2010	COMP	190 $\pi^- ightarrow \pi^- \pi^- \pi^+ P b^{\prime}$		
••• We do not u	••• We do not use the following data for averages, fits, limits, etc. •••						
$410 \pm \! 31 \pm \! 30$		1 AUBERT	2007AU	BABR	10.6 $e^+~e^- ightarrow ho^0 ho^\pm\pi^\mp\gamma$		
520 - 680	6360	2 LINK	2007A	FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$		
(480 ±20)		3 GOMEZ-DUMM	2004	RVUE	$ au^+ o \pi^+ \pi^+ \pi^- u_ au$		
580 ± 41	90k	SALVINI	2004	OBLX	$\overline{p} \; p ightarrow 2 \; \pi^+ 2 \; \pi^-$		
460 ± 85	205	4 DRUTSKOY	2002	BELL	$B^{(*)} K^{-} K^{*0}$		
$814 \pm 36 \pm 13$	37k	5 ASNER	2000	CLE2	10.6 $e^+~e^- \rightarrow \tau^+\tau^-$, $\tau^- \rightarrow \pi^-\pi^0\pi^0\nu_\tau$		

 $\tau^- \to \pi^- \pi^+ \pi^- \nu$

- V-A: Vector (1⁻⁻) or Axial (1⁺⁺)
- Isospin 1 due to the charge
- Negative G-parity \Rightarrow positive C-parity

$$\Rightarrow J^{PC} = 1^{++}$$

Fit to ALEPH data

[data from ALEPH, Phys.Rept.421 (2005)]

Fit to ALEPH data

[data from ALEPH, Phys.Rept.421 (2005)]

Dispersive model vs Non-dispersive model

- Difference: LH singularities
- The dispersive model fits significantly better

Fit function

$$(\vec{D} - \vec{M}(c, m, g))^T C_{\text{stat}}^{-1} (\vec{D} - \vec{M}(c, m, g)),$$

- Stat. cov. matrix is used in the fit
- Syst. cov. matrix in the bootstrap

First measurement of the $a_1(1260)$ pole position

The result and systematic studies [MM (JPAC), PRD98 (2018), 096021]

Meson spectroscopy

- Using hadronic scattering as QCD excitation laboratory.
- Mapping gluonic degrees of freedom to structures of excited states is an essential test of QCD.
- Non-perturmative methods are required

Resent impact of JPAC to light meson spectroscopy

Extensive analyses and extraction of resonance poles:

- Tensor states: $a_2(1320)$ and $a_2(1700)$
- Establishing single exotic $\pi_1(1600)$
- Ground axial state *a*₁(1260)

JPAC effort

- \bullet > 50 research papers in PRD, PLB, PRL, EJPC (> 10 in 2018)
- $\bullet\,>100$ invited talks and seminars
- Collaboration with GlueX, CLAS12, COMPASS, MAMI, BaBar, LHCb,...
- Summer Schools on Reaction Theory (2015, 2017)

Thank you

Three-particles PW technique

Model: a sum of 88* partial waves

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{\boldsymbol{g}^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

 Analytical continuation of ρ(s): integral over the Dalitz plot for the complex energy

$$\rho(\boldsymbol{s}) = \sum_{\lambda} \int \mathrm{d} \boldsymbol{\Phi}_3 \left| f_{\rho}(\sigma_1) \boldsymbol{d}_{\lambda 0}(\theta_{23}) - f_{\rho}(\sigma_3) \boldsymbol{d}_{\lambda 0}(\hat{\theta}_3 + \theta_{12}) \right|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - *P*-wave Blatt-Weisskopf factors

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{\boldsymbol{g}^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

 Analytical continuation of ρ(s): integral over the Dalitz plot for the complex energy

$$\rho(\boldsymbol{s}) = \sum_{\lambda} \int \mathrm{d} \boldsymbol{\Phi}_3 \left| f_{\rho}(\sigma_1) \boldsymbol{d}_{\lambda 0}(\theta_{23}) - f_{\rho}(\sigma_3) \boldsymbol{d}_{\lambda 0}(\hat{\theta}_3 + \theta_{12}) \right|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12})
ight|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

M. Mikhasenko (CERN)

Light mesons from JPAC+COMPASS analyses

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12})
ight|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

M. Mikhasenko (CERN)

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

 Analytical continuation of ρ(s): integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12})
ight|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

M. Mikhasenko (CERN)

Tour to the complex plane

ne [MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{\boldsymbol{I}}^{-1}(\boldsymbol{s})| = \left| \frac{m^2 - \boldsymbol{s}}{g^2} - i\left(\frac{\tilde{\rho}(\boldsymbol{s})}{2} + \rho(\boldsymbol{s})\right) \right|.$$

 Analytical continuation of ρ(s): integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 \left| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12})
ight|^2$$

- Analytic contuation of ρ -meson decay amplitude f_{ρ}
 - Breit-Wigner amplitude with the dynamic width
 - P-wave Blatt-Weisskopf factors

M. Mikhasenko (CERN)

The spurious pole in the Breit-Wigner model

Energy dependent width, stable particles

$$t(s) = \frac{1}{m^2 - s - im\Gamma(s)}, \quad \Gamma(s) = \Gamma_0 \frac{p(s)}{p(m^2)} \frac{m}{\sqrt{s}}, \quad p(s) = \frac{\sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}}{2\sqrt{s}}$$

Example: $m_1 = 140$ MeV, $m_2 = 770$ MeV, m = 1.26 GeV, $\Gamma_0 = 0.5$ GeV

Live demo

Bootstrap: stability of the poles

• Statistical bands are obtained by 50k bootstrap samples

Subchannel dynamics

Khuri-Treiman equations

Consistency equations for the isobar lineshape

- Governed by two-body unitarity
- Model: only RHC for the isobar amplitude
- Uses Analyticity / Cauchy theorem / Omnès trick

