

Recent BaBar results in light hadron spectroscopy

- $\rightarrow e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ and $\pi^+\pi^-\pi^0\pi^0\eta$
- $\underline{e}^+\underline{e}^- \rightarrow \pi^+\underline{\pi}^-\underline{\eta}$ $\underline{e}^+\underline{e}^- \rightarrow \underline{e}^+\underline{e}^-\underline{\eta}'$

Evgeny Kozyrev e.a.kozyrev@inp.nsk.su February 27, 2019

BABAR detector at center-of mass energy of 10.6 GeV at the e⁺e⁻ collider PEP-II at SLAC

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$

600F

200

0.4

0.6

0.8

 $m(\pi^{\pm}\pi^{0}), \text{ GeV/c}^{2}$

• The systematic uncertainty is typically between 10% and 13%.

 $\rho \pm \rho \mp \pi^0$ and $\eta (1285) \pi^- \pi^+$ are also seen

0.8

0.2

0.4

0.6

m(π[±]η), GeV/c²

0.8

m(π[∓]η),

1.2

10

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$

- $\eta(\rightarrow \pi^0 \pi^0 \pi^0) \rho(\rightarrow \pi^+ \pi^-)$
- $\omega(\rightarrow \pi^+\pi^-\pi^0)\pi^0\pi^0$
- $\rho^{\pm}(\rightarrow\pi^{\pm}\pi^{0})\pi^{\mp}\pi^{0}\pi^{0}$
- $\rho^{\pm}(\rightarrow\pi^{\pm}\pi^{0})\rho^{\mp}(\rightarrow\pi^{\mp}\pi^{0})\pi^{0}$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$

- ω(→π⁺π⁻π⁰)π⁰η
- φ(→π⁺π⁻π⁰)π⁰η
- $\rho^{\pm}(\rightarrow\pi^{\pm}\pi^{0})\pi^{\mp}\pi^{0}\eta$
- $\rho^{\pm}(\rightarrow\pi^{\pm}\pi^{0})\rho^{\mp}(\rightarrow\pi^{\mp}\pi^{0})\eta$
- a(980) meson is seen in πη

$e+e-\rightarrow\pi^{+}\pi^{-}\eta(\rightarrow\gamma\gamma)$

- Systematic uncertainty ~ 5%
- $\Gamma(\rho(1450) \rightarrow e^+e^-)\mathcal{B}(\rho(1450) \rightarrow \eta\pi^+\pi^-)$ = $(210 \pm 24_{\text{stat}} \pm 10_{\text{syst}}) \text{ eV}$ $\Gamma(\rho(1700) \rightarrow e^+e^-)\mathcal{B}(\rho(1700) \rightarrow \eta\pi^+\pi^-)$ = $(84 \pm 26_{\text{stat}} \pm 4_{\text{syst}}) \text{ eV}$

 BaBar and SND results with η→3π⁰ are not presented here

P — pseudoscalar meson $e_{1,2}$ — photon polarization $q_{1,2}$ — 4-momentum of photon $-Q^2 = q^2$ VMD pQCD

 $Q_1^2 \approx 0, Q_2^2 \rightarrow \infty \qquad 1/Q^2 \qquad 1/Q^2$

 $Q_1^2, Q_2^2 \to \infty$ 1/Q⁴ 1/Q²

The an	nplitude	of the	γ *γ*→ P	transition:	
--------	----------	--------	------------------------	-------------	--

$$\boldsymbol{A} = \boldsymbol{e}^{2} \boldsymbol{\varepsilon}_{\boldsymbol{\mu}\boldsymbol{\nu}\boldsymbol{\alpha}\boldsymbol{\beta}} \boldsymbol{e}_{1}^{\boldsymbol{\mu}} \boldsymbol{e}_{2}^{\boldsymbol{\nu}} \boldsymbol{q}_{1}^{\boldsymbol{\alpha}} \boldsymbol{q}_{2}^{\boldsymbol{\beta}} \boldsymbol{F}(\boldsymbol{q}_{1}^{2}, \boldsymbol{q}_{2}^{2}),$$

- There are a lot of experimental study of pseudoscalar meson production via the fusion of real (**on-shell**) and virtual (**off-shell**) photons $\gamma^*\gamma \rightarrow P: \pi^0, \eta, \eta', \eta_c$
- There is the first measurement of the double **off-shell** transition $\gamma^*\gamma^* \rightarrow P$

Phys. Rev. D 98, 112002

Let us see to $\mathbf{F}_{\eta'}(\mathbf{q}^2, \mathbf{0})$ from experimental and theoretical points

• In double off-shell case at Q² > W_Vm_V: $F_{\eta'}(Q_1^2, Q_2^2) = \frac{F_{\eta'}(0, 0)}{(1 + Q_1^2/\Lambda_P^2)(1 + Q_2^2/\Lambda_P^2)}$ where Λ_P — effective pole mass parameter

Experimental data (with sist. uncert.) vs VMD.

$$\begin{split} \mathbf{F}(\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) &= \int \mathbf{T}(\mathbf{x},\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) \ \mathbf{\phi}(\mathbf{x},\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) \ \mathbf{dx} \\ \text{x - is the fraction of the meson momentum carried by one of the quarks} \\ \mathbf{T}(\mathbf{x},\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) - \text{hard scattering amplitude for } \mathbf{\gamma}^{*}\mathbf{\gamma}^{*} \rightarrow \text{qqbar} \\ \text{transition which is calculable in pQCD} \\ \mathbf{\phi}(\mathbf{x},\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) - \text{nonperturbative meson distribution amplitude} \\ \text{(DA) describing transition P} \rightarrow \text{qqbar} \end{split}$$

$$T_H(x,Q_1^2,Q_2^2) = \frac{1}{2} \cdot \frac{1}{xQ_1^2 + (1-x)Q_2^2} \cdot \left(1 + C_F \frac{\alpha_S(Q^2)}{2\pi} \cdot t(x,Q_1^2,Q_2^2)\right) + (x \to 1-x) + O(\alpha_s^2) + O(\Lambda_{QCD}^4/Q^4)$$

NLO correction [E. Braaten, Phys. Rev. D 28, 3 (1983)]

• The shape (x dependence) of meson DA $\varphi(\mathbf{x}, \mathbf{Q}_1^2, \mathbf{Q}_2^2)$ is unknown.

$$F_{\eta'}(Q_1^2, Q_2^2) = \left(\frac{5\sqrt{2}}{9}f_n \sin \phi + \frac{2}{9}f_s \cos \phi\right) \int_0^1 dx \frac{1}{2} \frac{6x(1-x)}{xQ_1^2 + (1-x)Q_2^2} \left(1 + C_F \frac{\alpha_s(\mu^2)}{2\pi} \cdot t(x, Q_1^2, Q_2^2)\right) + (x \to 1-x),$$
Master formula
NLO

The $\gamma^*\gamma \rightarrow \eta$ *Transition Form Factor*

• A large number of systematic uncertainties were studied in our previous work where the number of signal events was significantly larger.

[1] [PRD 84, 052001]: P. del Amo Sanchez et al. (BaBar collaboration), Phys. Rev. D 84, 052001 (2011)
 (> 126 citations).

• We require $0.50 < m_{_{YY}} < 0.58 \text{ GeV}/c^2$

The π⁺π⁻η mass spectra for data events. The open histogram is the fit result. The dashed line represents fitted background.

The $Q_{e^-}^2$ vs. $Q_{e^+}^2$ for events with **0.945** < $m_{2\pi\eta}^2$ < **0.972** GeV/ c^2

• The average momentum transfers for each region are calculated using the data spectrum normalized to the detection efficiency:

$$\overline{Q_{1,2}^2} = \frac{\sum_i Q_{1,2}^2(i) / \varepsilon(Q_1^2, Q_2^2)}{\sum_i 1 / \varepsilon(Q_1^2, Q_2^2)}.$$

The $\pi^+\pi^-\eta$ mass spectra for data events for the five Q^2 ranges. The open histograms are the fit results. The dashed lines represent background.

Detection efficiency

• The detector acceptance limits the detection of scattered fermions at small Q^2 . The minimum Q^2 equals to 2 GeV² $\int c(Q^2 Q^2) E^2(Q^2 Q^2) dQ^2 dQ^2$ (**F** from master formula at

• R leads to the decrease of the detection efficiency by ~10 %.

• The maximum energy of the photon emitted from the initial state is restricted by the requirement $E_v < 0.05\sqrt{s}$, where \sqrt{s} is the e⁺e⁻ center-of-mass (c.m.) energy.

Cross section and Form Factor

• The differential cross section for $e^+e^- \rightarrow e^+e^-\eta'$ is calculated as

- From PDG: B = B($\eta' \rightarrow \pi^+\pi^-\eta$)×B($\eta \rightarrow 2\gamma$)=(0.3941 ± 0.0020)×(0.429 ± 0.007) = 0.169 ± 0.003
- $\sigma_{e+e-\rightarrow e+e-\eta'}$ (2 < Q_1^2 , Q_2^2 < 60 GeV²)= (11.4^{+2.8}) fb

$\overline{Q_1^2}, \overline{Q_2^2}, { m GeV}^2$	$arepsilon_{ ext{true}}$	R	N_{events}	$d^2\sigma/(dQ_1^2dQ_2^2)$	$F(\overline{Q_1^2}, \overline{Q_2^2})$
				$\times 10^4$, fb/GeV ⁴	$\times 10^3$, GeV ⁻¹
6.48, 6.48	0.019	1.03	$14.7^{+4.3}_{-3.6}$	$1471.8^{+430.1}_{-362.9}$	$14.32^{+1.95}_{-1.89} \pm 0.83 \pm 0.14$
16.85, 16.85	0.282	1.10	$4.1^{+2.7}_{-2.7}$	$4.2^{+2.8}_{-2.8}$	$5.35^{+1.54}_{-1.54} \pm 0.31 \pm 0.42$
14.83, 4.27	0.145	1.07	$15.8^{+4.8}_{-4.0}$	$39.7^{+12.0}_{-10.2}$	$8.24^{+1.16}_{-1.13} \pm \ 0.48 \pm 0.65$
38.11, 14.95	0.226	1.11	$10.0^{+3.9}_{-3.2}$	$3.0^{+1.2}_{-1.0}$	$6.07^{+1.09}_{-1.07} \pm 0.35 \pm 1.21$
45.63, 45.63	0.293	1.22	$1.6^{+1.8}_{-1.1}$	$0.6\substack{+0.7\\-0.6}$	$8.71^{+3.96}_{-8.71} \pm 0.50 \pm 1.04$
	Ξ				
			Statistical		Systematic Model

The statistical uncertainty is dominant

 $F_{\eta'}(Q_1^2, Q_2^2) = \frac{F_{\eta'}(0, 0)}{(1 + Q_1^2/\Lambda_P^2)(1 + Q_2^2/\Lambda_P^2)}$ The Λ_p is fixed at 849 MeV/c² from the approximation of $F_{\eta'}(Q^2, 0)$ with one off-shell photon [Phys. Rev. D 85, 057501 (2012)].

The comparison of obtained form-factor with theoretical predictions. Error bars - statistical uncertainties. Shaded rectangles - quadratic sum of the systematic and model uncertainties.

$$F_{\eta'}(Q_1^2, Q_2^2) = \left(\frac{5\sqrt{2}}{9}f_n \sin\phi + \frac{2}{9}f_s \cos\phi\right) \int_0^1 dx \frac{1}{2} \frac{6x(1-x)}{xQ_1^2 + (1-x)Q_2^2} \left(1 + C_F \frac{\alpha_s(\mu^2)}{2\pi} \cdot t(x, Q_1^2, Q_2^2)\right) + (x \to 1-x),$$

- pQCD calculation is in good agreement with data ($\chi^2/n.d.f. = 6.2/5$, Prob = 28%)
- VMD model exhibits a clear disagreement with the experiment.

BABAR

- The new results on the measurements of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$, $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ and $e^+e^- \rightarrow \pi^+\pi^-\eta$ have been presented.
- The $\gamma^*\gamma^* \rightarrow \eta'$ transition form factor $F(Q_1^2, Q_2^2)$ have been measured for Q^2 range from 2 to 60 GeV² with ~ 50 events.
- The form factor is in reasonable agreement with the pQCD prediction. We propose a measurement of this quantity at BELLE II.

Thank you for your attention

Back up slides

Introduction. $F(Q_1^2, Q_2^2)$ at <u>large</u> Q^2 .

9

FF is **less sensitive to a shape of the meson DA** in comparison to the single off-shell FF.

Pseudoscalar pole contribution to the hadronic light-by-light piece of aµ

Adolfo Guevara, Pablo Roig, JJ Sanz Cillero. Sep 17, 2018. 7 pp.

Conference: C18-06-25.2

e-Print: arXiv:1809.06175

is the largest one. A way to reduce such uncertainty could be by taking into account data form doubly off-shell TFF such as that given by BaBar for the η' -TFF [35]. Considering all possible contributions to the error we get

$$a_{\mu}^{P,HLbL} = (8.47 \pm 0.16_{\text{sta}} \pm 0.09_{1/N_{c}} + 0.5_{-0} \text{ asym}) \cdot 10^{-10},$$
 (14)

11

where the first error (sta) comes from the fit of the TFF, the second from possible $1/N_C$ corrections and the last from the wrong asymptotic behavior estimated through the effects of heavier resonances in the TFF.

M. Poppe, Int. J. Mod. Phys. A 1, 545 (1986):

At present, a major interest of $\gamma\gamma$ physics concerns the answer to the question "do the photons resolve the hadron's structure or not?" In other words: is particle production in $\gamma\gamma$ interactions primarily the production of quark pairs or is the VDM interpretation correct that the photons turn into vector mesons before they interact? In the latter case, two-photon physics would be just a continuation of fixed target hadron scattering experiments, and we would not expect great news to appear.

<mark>A.V. Radyushkin, R. Ruskov, Nuclear Physics B 481 (1996) 625-680:</mark>		VMD	pQCD
$4\pi \int \varphi_{-}(x)$	$Q_1^2 \approx 0, Q_2^2 \rightarrow \infty$	$1/Q^2$	$1/Q^2$
$F_{\gamma^*\gamma^*\pi^0}^{LO}(q^2,Q^2) = \frac{\pi}{3} \int_{0}^{1} \frac{\pi\pi(\alpha\gamma)}{xQ^2 + \bar{x}q^2} dx,$	$Q_1^2, Q_2^2 \rightarrow \infty$	$1/Q^{4}$	$1/Q^2$

where $\varphi_{\pi}(x)$ is the pion distribution amplitude and $x, \bar{x} \equiv 1 - x$ are the fractions of the pion light-cone momentum carried by the quarks. In the region where both photon virtualities are large: $q^2 \sim Q^2 \gtrsim 1$ GeV², the pQCD predicts the overall $1/Q^2$ fall-off of the form factor, which differs from the naive vector meson dominance expectation $F_{\gamma^*\gamma^*\pi^0}(q^2,Q^2) \sim 1/q^2Q^2 \sim 1/Q^4$. Thus, establishing the $1/Q^2$ power law in this region is a crucial test of pQCD for this process. The study of $F_{\gamma^*\gamma^*\pi^0}(q^2,Q^2)$ over a wide range of the ratio q^2/Q^2 of two large photon virtualities can then provide non-trivial information about the shape of $\varphi_{\pi}(x)$.

Systematic uncertainty. Background subtraction.

• $e^+e^- \rightarrow e^+e^-\eta'\pi^0 \rightarrow e^+e^-\pi^-\pi^+\eta\pi^0$ - kinematically closest background for the process under study. Using the simulation of the $e^+e^- \rightarrow e^+e^-a_0(1450) \rightarrow e^+e^-\eta'\pi^0$ process we estimate the contribution $N_{\eta'\pi^0} < 0.16$ at 90% C.L.

Systematic uncertainty. Background subtraction.

- $e^+e^- \rightarrow e^+e^- J/\psi(\phi) \rightarrow e^+e^-\eta'\gamma$ is negligible according to [**PRD 84**, **052001**].
- $e^+e^- \rightarrow \gamma^* \rightarrow X$:

The cosine of angle between scattered and initial electron (positron) in c.m.f.

The fraction of the events in the bins.

It is reasonable to assume that the $\cos(\alpha_{e^{\pm}})$ spectrums must be symmetric in [-1:1] region for **annihilation processes**, while signal scattered electron (positron) prefers to fly in the about the same direction.

The main source of systematic uncertainty of cross section

C	\mathbf{I} I and \mathbf{I} is the (07)	
Source	Uncertainty (%)	
π^{\pm} identification	1.0	\square [PKD 84, 052001]
e^{\pm} identification	1.0	
Other selection criteria		
Track reconstruction	0.9	
$\eta \to 2\gamma$ reconstruction	2	
Trigger, filters	1.3	<mark>5</mark>
Background subtraction	3.7	
Radiative correction	1.0	
Luminosity	1.0	
Tetal	12%	

selection	$N_{signal}/\varepsilon_{true}$	deviation from standard criteria
standard selection criteria	985 ± 197	
$P_{e^+e^-\eta'}$ is less than 1 GeV/c instead of 0.35 GeV/c	1052 ± 273	6.8
$10.20 < E_{e^+e^-\eta'} < 10.75 \text{ GeV}$ instead of $10.3 < E_{e^+e^-\eta'} < 10.65 \text{ GeV}$	942 ± 235	-4.3
without the restrictions on E_{e^+} and E_{e^-}	1061 ± 280	7.7
$0.48 < m_{2\gamma} < 0.60 \text{ GeV}/c^2$ instead of	958 ± 181	-2.7
$0.50 < m_{2\gamma} < 0.58 \ \mathrm{GeV}/c^2$		
total		11

Model uncertainty

(d²σ/(dQ²₁ dQ²₂))_{MC} and ε_{true} depends on model.</mark>

Repeating the calculations with a constant TFF we estimate the model uncertainty. For the cross section - about 60% due to the strong dependence of ε_{true} on the input

model for TFF at small values of Q_{1}^{2} and Q_{2}^{2} .

The TFF is much less sensitive to the model.

TABLE V: $\frac{d^2\sigma}{dQ_1^2dQ_2^2}$	obtained	with	different	models	for	TFF
---	----------	------	-----------	--------	-----	-----

	1	2	3	4	5
QCD	$1471.8^{+430.136}_{-362.91}$	$4.17^{+2.75}_{2.75}$	$39.72^{+11.98}_{-10.18}$	$2.98^{+1.17}_{-0.96}$	$0.62^{+0.69}_{-0.62}$
const	$637.10\substack{+186.19\\-157.09}$	$4.15_{2.74}^{+2.74}$	$33.30^{+10.05}_{-8.54}$	$2.76^{+1.08}_{-0.89}$	$0.62^{+0.69}_{-0.62}$
deviation, $\%$	60	0.6	15	7	1.

TABLE VI: TFF obtained with different models for TFF

	1	2	3	4	5
QCD	$14.32^{+1.95}_{-1.89}$	$5.35^{+1.54}_{-1.54}$	$8.24^{+1.16}_{-1.13}$	$6.07^{+1.09}_{-1.07}$	$8.71^{+3.96}_{-8.71}$
const	$14.61^{+1.99}_{-1.92}$	$5.62^{+1.62}_{-1.62}$	$7.24^{+1.02}_{-0.99}$	$7.24^{+1.30}_{-1.28}$	$10.02^{+4.55}_{-10.02}$
deviation $\%$	1	8	8	20	12

Technique

- Polar angle distribution for tagged electrons (positrons)
- The decay chain $\eta' \rightarrow \pi^+\pi^-\eta \rightarrow \pi^+\pi^-2\gamma$ is used
- A total integrated luminosity $L = 469 \text{ fb}^{-1}$
- GGResRc event generator is used [arXiv:1010.5969]. Initial and final state radiative corrections as well as vacuum polarization effects are included. The form factor is fixed to the constant value F(0,0).

The strategy: $dN/dQ^2 \implies d\sigma/dQ^2 \implies |F(Q^2)|$

22.18 $\leq \theta$ < **141.72** e⁻, Data Ψ 0.95 • e⁻, MC efficiency 0.90.85 p [GeV/c] $25.78 \le \theta < 146.10$ π⁻. Data efficiency • π. MC 0.70.6p [GeV/c

- We require the presense
- at least **two tracks** from GoodTrackLoose list passed LooseElectronMicroSecection
- at least **two tracks** from *GoodTrackLoose* list passed *TightKMPionMicroSelection*
- at least two photons from *GoodPhotonLoose* list
 -ε_v > 30 MeV

```
-0.45 < m_{_{\rm VV}} < 0.65 \text{ GeV}/c^2
```

- -The photon candidates are fitted with a η mass constraint.
- The η candidate and a pair of oppositely-charged pion candidates are fitted with a η' mass constraint.

Pions misedentification with TightKMPionMicroSelection:

• 10.3 < $E_{c.m.}(e^+e^-\pi^+\pi^-\eta)$ < 10.7 GeV

• Events that lie above and on the right of the lines (mostly, Bhabha scattering) are rejected.

The positron c.m. energy vs the electron c.m. energy

The comparison of the measured η' TFF with $Q_{e+}^2 < Q_{e-}^2$, $Q_{e+}^2 >= Q_{e-}^2$ and without the restriction.

The data-MC comparison of $\pi\pi\eta$ invariant mass distribution. The MC histogram is normalized to central bin of data distribution.

The expected number of signal $N_{signal}^{side} = 55 - 18/2 = 46$

The $Q_{e^-}^2$ vs. $Q_{e^+}^2$ for events from control side-band regions

If (d²σ/(dQ²1 dQ²2))_{MC} and ε_{true} is made using VMD TFF:

The comparison of obtained form-factor with theoretical predictions. The Error bars - statistical uncertainties. Shaded rectangles - quadratic sum of the systematic and model uncertainties.

$$\begin{aligned} |\eta' > &= \sin\phi \ |n > +\cos\phi \ |s > & |n > = \frac{1}{\sqrt{2}}(|\bar{u}u > +|\bar{d}d >) \\ F_{\eta'} &= \sin\phi \ F_n + \cos\phi \ F_s & |s > = |\bar{s}s > \\ & \lim_{Q^2 \to \infty} F_n(Q^2) = \frac{5\sqrt{2}}{3Q^2} f_n; \lim_{Q^2 \to \infty} F_s(Q^2) = \frac{2}{3Q^2} f_s; & |\eta' > = \sin\phi |n > +\cos\phi |s > \\ & \bullet \ F_{\eta'}(Q_1^2, Q_2^2) = (\frac{5\sqrt{2}}{9} \cdot f_n \cdot \sin\phi + \frac{2}{9} \cdot f_s \cdot \cos\phi) \cdot \int_0^1 dx \frac{3x(1-x)}{xQ_1^2 + (1-x)Q_2^2} (1 + C_F \frac{Q^2}{2\pi} \cdot t(x, Q_1^2, Q_2^2)) \\ & +(x \to 1-x) \end{aligned}$$

- at which scale of Q^2 the asymptotic pQCD perdiction starts to be valid?
- In the case of $\gamma\gamma^* \rightarrow P$:

$$F_{\eta'}(Q^2) = F_{\eta'}(Q^2, 0) = \frac{\frac{5\sqrt{2}}{9} \cdot f_n \cdot \sin\phi + \frac{2}{9} \cdot f_s \cdot \cos\phi}{Q^2} \cdot \left(1 - \frac{5}{2}C_F\frac{\alpha_S(Q^2)}{2\pi}\right)$$