



# New Physics Beyond the SM @BESIII

#### Minggang Zhao (on behalf of the BESIII Collaboration)

School of Physics, Nankai University, Tianjin, China

XII International Workshop on  $e^+e^-$  Collision from Phi to Psi February 25 - March 1, 2019, Novosibirsk, Russia













| Europe (14)                                                                                                                                               |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Us (4)" Us (4)                                                                                            | A.     |
| Univ. of Hawaii<br>Carnegie Mellon Univ.<br>Univ. of Minnesota<br>Kore<br>Univ. Security<br>Carnegie Mellon Univ.                                         | ea (1) |
| Univ. of Indiana Netherland: KVI/Univ. of Groningen Seduriv<br>Sweden: Uppsala Univ.<br>Mongolia (1) Pakistan (2) Turkey: Turkey Accelerator Center Japan | n (1)  |
| Institute of Physics Univ. of Punjab<br>and Technology COMSAT CIIT IHEP, CCAST, UCAS, Shandong Univ.,                                                     | Univ.  |
| Univ. of Sci. and Tech. of China<br>Zhejiang Univ., Huangshan Coll.<br>Huazhong Normal Univ., Wuhan Univ.                                                 |        |
| Indian Institute of Technology Zhengzhou Univ., Henan Normal Univ.<br>Peking Univ., Tsinghua Univ.,                                                       | *****  |
| 61 institutions<br>Shanxi Univ., Sichuan Univ., Univ. of South Chin                                                                                       | a      |
| 14 countries<br>Nanjing Univ., Nanjing Normal Univ., Southeast Univ.<br>Guangxi Normal Univ., Guangxi Univ.                                               | giv.   |
| 459 authors Suzhou Univ., Hangzhou Normal Univ.<br>Lanzhou Univ., Henan Sci. and Tech. Univ.                                                              | /      |

Jinan Univ., Hunan Norml Univ., Xinyang Normal Univ.

![](_page_3_Figure_4.jpeg)

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

![](_page_4_Figure_3.jpeg)

![](_page_4_Figure_4.jpeg)

## New Physics Searches at BESIII

![](_page_5_Picture_1.jpeg)

| New Physics       | Channels                                                                                              | Publications           |
|-------------------|-------------------------------------------------------------------------------------------------------|------------------------|
| Dark Photons      | $e^+e^- \to \gamma_{\rm ISR}\gamma', \gamma' \to l^+l^-$                                              | PLB774, 252 (2017)     |
|                   | $e^+e^-  ightarrow \eta \gamma', \gamma'  ightarrow e^+e^-$                                           | PRD99, 012006 (2019)   |
|                   | $e^+e^-  ightarrow \eta'\gamma', \gamma'  ightarrow e^+e^-$                                           | PRD99, 012013 (2019)   |
| Invisible Decover | $J/\psi \to \phi \eta/\eta', \eta/\eta' \to invisible$                                                | PRD87, 012009 (2013)   |
| Invisible Decays  | $J/\psi  ightarrow \eta \omega / \phi, \omega / \phi  ightarrow invisible$                            | PRD98, 032001 (2018)   |
| Light Higgs       | $\psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$ | PRD85, 092012 (2012)   |
|                   | $J/\psi \to \gamma A^0, A^0 \to \mu^+ \mu^-$                                                          | PRD93, 052005 (2016)   |
| BNV/LNV           | $J/\psi \to \Lambda_c^+ e^- + c.c.$                                                                   | arXiv: 1803.04789      |
|                   | $D \to K \pi e^+ e^+$                                                                                 | arXiv: 1902.02450      |
| LFV               | $J/\psi \to e^+\mu^- + c.c.$                                                                          | PRD87, 112007 (2013)   |
| CV                | $J/\psi 	o \gamma\gamma, \gamma\phi$                                                                  | PRD90, 092002 (2014)   |
| FCNC              | $D^0 \to \gamma \gamma$                                                                               | PRD91, 112015 (2015)   |
|                   | $J/\psi/\psi(3686) \to D^0 e^+ e^-$                                                                   | PRD96,111101-R (2017)  |
|                   | $D \rightarrow h(h')e^+e^-$                                                                           | PRD97, 072015 (2018)   |
|                   | $\psi(3686) \to \Lambda_c^+ \bar{p} e^+ e^- + c.c.$                                                   | PRD97, 091102-R (2018) |

## New Physics Searches at BESIII

![](_page_6_Picture_1.jpeg)

| New Physics       | Channels                                                                                              | Publications           |
|-------------------|-------------------------------------------------------------------------------------------------------|------------------------|
| Dark Photons      | $e^+e^- \to \gamma_{\rm ISR}\gamma', \gamma' \to l^+l^-$                                              | PLB774, 252 (2017)     |
|                   | $e^+e^- \to \eta \gamma', \gamma' \to e^+e^-$                                                         | PRD99, 012006 (2019)   |
|                   | $e^+e^-  ightarrow \eta'\gamma', \gamma'  ightarrow e^+e^-$                                           | PRD99, 012013 (2019)   |
| Invisible Decover | $J/\psi \to \phi \eta/\eta', \eta/\eta' \to invisible$                                                | PRD87, 012009 (2013)   |
| Invisible Decays  | $J/\psi \to \eta \omega/\phi, \omega/\phi \to invisible$                                              | PRD98, 032001 (2018)   |
| Light Higgs       | $\psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$ | PRD85, 092012 (2012)   |
| Light Higgs       | $J/\psi \to \gamma A^0, A^0 \to \mu^+ \mu^-$                                                          | PRD93, 052005 (2016)   |
| RNV/I NV          | $J/\psi \to \Lambda_c^+ e^- + c.c.$                                                                   | arXiv: 1803.04789      |
| DINV/LINV         | $D \to K \pi e^+ e^+$                                                                                 | arXiv: 1902.02450      |
| LFV               | $J/\psi \to e^+\mu^- + c.c.$                                                                          | PRD87, 112007 (2013)   |
| CV                | $J/\psi 	o \gamma\gamma, \gamma\phi$                                                                  | PRD90, 092002 (2014)   |
| FCNC              | $D^0 \to \gamma \gamma$                                                                               | PRD91, 112015 (2015)   |
|                   | $J/\psi/\psi(3686) \to D^0 e^+ e^-$                                                                   | PRD96,111101-R (2017)  |
|                   | $D \rightarrow h(h')e^+e^-$                                                                           | PRD97, 072015 (2018)   |
|                   | $\psi(3686) \to \Lambda_c^+ \bar{p} e^+ e^- + c.c.$                                                   | PRD97, 091102-R (2018) |

#### **01** Dark Sector

- Numerous astrophysical observations strongly suggest the existence of Dark Matter(DM) which provides a hint of dark sector (hidden sector).
- There might exist some "portals" that connect the SM sector to DM sector

| Portal                                   | Particles         | Operator(s)                                                                                                                                                                      | Hid |
|------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| "Vector"                                 | Dark photons      | $-rac{\epsilon}{2\cos	heta_W}B_{\mu u}F'^{\mu u}$                                                                                                                               |     |
| "Axion"                                  | Pseudoscalars     | $\left \frac{a}{f_a}F_{\mu\nu}\widetilde{F}^{\mu\nu},\frac{a}{f_a}G_{i\mu\nu}\widetilde{G}_i^{\mu\nu},\frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi\right $ |     |
| "Higgs"                                  | Dark scalars      | $(\mu S + \lambda S^2) H^{\dagger} H$                                                                                                                                            |     |
| "Neutrino"                               | Sterile neutrinos | $y_N LHN$                                                                                                                                                                        |     |
| R. Essig et al., arXiv: 1311.0029 (2013) |                   |                                                                                                                                                                                  |     |

![](_page_7_Picture_5.jpeg)

Iden Sector

![](_page_7_Picture_6.jpeg)

#### **01** Dark Sector

![](_page_8_Picture_1.jpeg)

- Postulate an extra U(1) gauge symmetry, and the corresponding gauge boson is called dark photon or U boson,  $\gamma'$ , A',  $Z'_d$
- It can decay into light DM particles  $\chi\chi$
- or decay into the SM  $q\bar{q},\ell^+\ell^-,\nu\bar{\nu}$ 
  - direct and very weak interaction
  - kinetic mixing with the SM photon, or mass mixing with the  ${\cal Z}$

$$\mathcal{L}_{\rm int} = -\left(\frac{\varepsilon e J_{\mu}^{\rm EM} + \varepsilon_Z \frac{g}{2\cos\theta_W} J_{\mu}^{\rm NC}\right) Z_d^{\mu}$$

- mixing strength  $\varepsilon = \sqrt{\alpha'/\alpha} \sim 10^{-2} 10^{-5}$  (could be smaller)
- mass ranges:  $MeV/c^2 GeV/c^2$  ( $\varepsilon_Z$  suppressed by  $(m_{A'}/m_Z)^2$ )

A resonant structure in the invariant mass spectrum

![](_page_9_Picture_1.jpeg)

ŋ<sup>()</sup>

 $J/\psi$ 

- First search for dark photon in E.M. Dalitz decays
  - $J/\psi \rightarrow \eta \gamma', \gamma' \rightarrow e^+ e^-$  PRD99, 012013 (2019)
  - $J/\psi \rightarrow \eta' \gamma', \gamma' \rightarrow e^+ e^-$  PRD99, 012006 (2019)
- Check narrow peaking structures in the  $m_{e+e}$ -distribution

![](_page_9_Figure_6.jpeg)

![](_page_10_Picture_1.jpeg)

- No obvious peaking structures observed
- Fit to  $m_{e+e}$  of data to obtain signal yields ( $\omega, \phi$  regions excluded)
- Combined limits at 90% C.L. on BF and  $\epsilon$  (Bayesian approach)

 $\begin{array}{ll} \mathcal{B}(\psi \to P\gamma') \mathcal{B}(\gamma' \to e^+ e^-) & \mathcal{B}(\psi \to P\gamma') & \varepsilon \\ P = \eta' & < 1.8 \times 10^{-8} - 2.0 \times 10^{-7} & < 6.0 \times 10^{-8} - 7.8 \times 10^{-7} & 3.4 \times 10^{-3} - 2.6 \times 10^{-2} \\ P = \eta & < 1.9 \times 10^{-8} - 9.1 \times 10^{-7} & 10^{-3} - 10^{-2} \end{array}$ 

![](_page_10_Figure_6.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_11_Figure_2.jpeg)

#### **01** Dark Sector: invisible decay

• In the SM, quarkonium states can decay into neutrino and anti-neutrino pair via virtual Z<sup>0</sup> boson with very low expected BFs

 $\mathcal{B}(\omega \rightarrow \nu \nu) = 8.4 \times 10^{-14}, \\ \mathcal{B}(\phi \rightarrow \nu \nu) = 5.8 \times 10^{-12}$ 

- However, if singlet scalar, pseudo-scalar or vector (portals) exists, and mediates the SM-DM interaction, it can allow invisible decays of SM particles to DM particles.
- The branching fraction of invisible decay might be enhanced in the presence of light DM particles.

| mode                                 | s-wave               | p-wave               |
|--------------------------------------|----------------------|----------------------|
| $BR(\Upsilon(1S) \to \chi\chi)$      | $4.2 \times 10^{-4}$ | $1.8 \times 10^{-3}$ |
| $BR(\Upsilon(1S) \to \nu \bar{\nu})$ | $9.9 \times 10^{-6}$ |                      |
| $BR(J/\Psi \to \chi \chi)$           | $2.5 \times 10^{-5}$ | $1.0 \times 10^{-4}$ |
| $BR(J/\Psi \to \nu \bar{\nu})$       | $2.7 \times 10^{-8}$ |                      |
| $BR(\eta \to \chi \chi)$             | $3.4 \times 10^{-5}$ | $1.4 \times 10^{-4}$ |
| $BR(\eta' \to \chi \chi)$            | $3.7 \times 10^{-7}$ | $1.5 \times 10^{-6}$ |
| $BR(\eta_c \to \chi \chi)$           | $1.3 \times 10^{-7}$ | $5.3 \times 10^{-7}$ |
| $BR(\chi_{c0}(1P) \to \chi\chi)$     | $2.7 \times 10^{-8}$ | $1.2 \times 10^{-7}$ |
| $BR(\phi \to \chi \chi)$             | $1.9 \times 10^{-8}$ | $7.8 \times 10^{-8}$ |
| $BR(\omega \to \chi \chi)$           | $7.2 \times 10^{-8}$ | $3.0 \times 10^{-8}$ |

B. McElrath, eConf C070805, 19 (2007)

![](_page_12_Picture_8.jpeg)

#### **01** Dark Sector: invisible decay

![](_page_13_Picture_1.jpeg)

- First search for  $J/\psi \rightarrow \eta \omega/\phi, \omega/\phi \rightarrow invisible$  PRD98, 032001 (2018)
- Recoiling mass (against  $\eta$ ) is defined as  $M_{\text{recoil}}^V \equiv \sqrt{(E_{\text{CM}} E_{3\pi})^2 |\vec{p}|_{3\pi}^2}$

![](_page_13_Figure_4.jpeg)

![](_page_14_Picture_0.jpeg)

#### **01** Dark Sector: invisible decay

- Fit to  $M_{\text{recoil}}^V$  to obtain signal yields
- No obvious signals found, upper limits set at 90% C.L.

$$\frac{\mathscr{B}(\omega \to invisible)}{\mathscr{B}(\omega \to \pi^{+}\pi^{-}\pi^{0})} < 8.1 \times 10^{-5}$$
$$\mathscr{B}(\omega \to invisible) < 7.3 \times 10^{-5}$$

$$\frac{\mathcal{B}(\phi \to invisible)}{\mathcal{B}(\phi \to K^+K^-)} < 3.4 \times 10^{-4}$$

 $\mathcal{B}(\phi \to invisible) < 1.7 \times 10^{-4}$ 

![](_page_14_Figure_7.jpeg)

### **02 BNV/LNV:** $J/\psi \rightarrow \Lambda_c^+ e^- + c \cdot c$ .

![](_page_15_Picture_1.jpeg)

- Many SM extensions and Grand Unified Theories, such as superstring or SUSY, predict proton decays. In this case, baryon number is violated while the difference  $\Delta$ (B-L) is conserved.
- Since the matter–antimatter asymmetry in the universe is an observable fact, the negative result from proton decay experiment does not imply BN is conserved.
- Searches for new physics at collider experiments are complementary to those at specifically designed non-collider experiments.

![](_page_15_Figure_5.jpeg)

![](_page_16_Picture_0.jpeg)

### **02 BNV/LNV:** $J/\psi \rightarrow \Lambda_c^+ e^- + c \cdot c$ .

- First search for  $J/\psi \rightarrow \Lambda_c^+ e^- + c \cdot c \cdot \Lambda_c^+ \rightarrow p K^- \pi^+$
- Check  $M_{pK^-\pi^+}$  distribution
- No events found in the signal window
- Upper limit at 90% C.L. on BF
  - $\mathscr{B}(J/\psi \rightarrow \Lambda_c^+ e^- + c . c.) < 6.9 \times 10^{-8}$
- The first BNV search in quarkonium decay products.
- More than two orders of magnitude than that of CLEO's measurement in the analogous process  $D^0 \rightarrow \bar{p}e^+ + c \cdot c$ .

![](_page_16_Figure_9.jpeg)

![](_page_16_Figure_10.jpeg)

![](_page_16_Picture_11.jpeg)

![](_page_17_Picture_1.jpeg)

- Observations of neutrino oscillation shown that the masses of neutrino should not be zero.
- Theoretically, the leading model accommodating the neutrino masses is the "see-saw" mechanism, in which the SM neutrinos can be Majorana particles.
- The Majorana neutrinos can be searched through the process violating the lepton-number (LN) conservation by two units ( $\Delta L = 2$ ).

![](_page_17_Figure_5.jpeg)

H.R. Dong et al Chin, Phys. C **39** 013101 (2015).

• Check m<sub>BC</sub>, no signals found

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_2.jpeg)

arXiv: 1902.02450 arXiv: 1902.02450 10<sup>-3</sup>  $D^0 \rightarrow K^- \pi^- e^+ e^+$ Check m<sub>BC</sub>, no signals found 15 10<sup>-4</sup> (a) UL at 90% C.L. on BFs 10<sup>-5</sup> С 10 %06 10<sup>-6</sup>  $\mathcal{B}(D^0 \rightarrow K^-\pi^-e^+e^+) < 2.7\times 10^{-6}$ 5 10<sup>-7</sup>  $\mathcal{B}(D^0 \to K^- e^+ \nu_N (e^+ \pi^-))$ at the  $\mathcal{B}(D^+ \to K^0_S \pi^- e^+ e^+) < 3.3 \times 10^{-6}$ on BF **10<sup>-4</sup>** (b)  $\mathscr{B}(D^+ \to K^- \pi^0 e^+ e^+) < 8.5 \times 10^{-6}$  $K_S^0\pi^-e^+e$ 10<sup>-5</sup> .0 MeV/c 10 Ч 10<sup>-6</sup>  $\mathscr{B}(D^0 \to K^0_S e^+ \nu_N(e^+ \pi^-))$ 10-7 5 Events/  $m_N (GeV/c^2)$ 0 The resultant ULs on the (C)  $\rightarrow K^{-}\pi^{0}e^{+}e^{+}$ mixing matrix element |VeN|2 10  $\mathcal{B}(D^0 \to K^- e^+ \nu_N (e^+ \pi^-))$ 10<sup>-2</sup> as a function of m<sub>N</sub> provide 10 10<sup>-3</sup> **10**<sup>-4</sup> additional/complementary 10<sup>-t</sup> Ne<sup>N</sup> information about the bounds on the  $|V_{eN}|^2$  in D meson decays 10<sup>-1</sup>  $\mathscr{B}(D^0 \to K^0_S e^+ \nu_N (e^+ \pi^-))$ 10<sup>-2</sup> 1.85 1.86 1.87 1.88 1.89  $10^{-3}$ 1.84  $\frac{\Gamma(m_N, V_{eN}(m_N))}{\Gamma(m_N, V'_{eN}(m_N))} = \frac{|V_{eN}(m_N)|^4}{|V'_{eN}(m_N)|^4}$ 10<sup>-4</sup>  $M_{BC}$  (GeV/c<sup>2</sup>) 10<sup>-5</sup> 0.6 0.7 0.8 0.9 0.3 0.4 0.5

 $m_N$  (GeV/c<sup>2</sup>)

#### **03 FCNC**

![](_page_21_Picture_1.jpeg)

- In SM, FCNC is strongly suppressed by GIM mechanism and can happen only through loop diagram, leading to a very small BF theoretically.
- The suppression in charm decays is much stronger than those in B and K system due to stronger diagram cancellation than the down-type quarks.
- Sensitive to New Physics.

![](_page_21_Figure_5.jpeg)

## **O3 FCNC:** $D \rightarrow h(h')e^+e^-$

•

![](_page_22_Picture_1.jpeg)

| Most of the                                                                                                 | Decay                                          | Upper limit                 | Experiment | Year | Ref. |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|------------|------|------|
| previous D <sup>0</sup> limits                                                                              | $D^0 \to \pi^0 e^+ e^-$                        | 45.0                        | CLEO       | 1996 | [14] |
| are at the level of 10 <sup>-5</sup> ~10 <sup>-4</sup>                                                      | $D^0 \to \eta e^+ e^-$                         | 110.0                       | CLEO       | 1996 | [14] |
|                                                                                                             | $D^0  ightarrow \omega e^+ e^-$                | 180.0                       | CLEO       | 1996 | [14] |
|                                                                                                             | $D^0 \to \overline{K}{}^0 e^+ e^-$             | 110.0                       | CLEO       | 1996 | [14] |
| LHCb observed<br>some four-body<br>decays of<br>$D^0 \rightarrow hh\mu^+\mu^-$ at<br>10 <sup>-7</sup> level | $D^0 \to \rho e^+ e^-$                         | 124.0                       | E791       | 2001 | [15] |
|                                                                                                             | $D^0 \rightarrow \phi e^+ e^-$                 | 59.0                        | E791       | 2001 | [15] |
|                                                                                                             | $D^0 \to \overline{K}^{*0} e^+ e^-$            | 47.0                        | E791       | 2001 | [15] |
|                                                                                                             | $D^0 \to \pi^+\pi^- e^+ e^-$                   | 370.0                       | E791       | 2001 | [15] |
|                                                                                                             | $D^0 \to K^+ K^- e^+ e^-$                      | 315.0                       | E791       | 2001 | [15] |
|                                                                                                             | $D^0 \to K^- \pi^+ e^+ e^-$                    | 385.0                       | E791       | 2001 | [15] |
|                                                                                                             | $D^+ \rightarrow \pi^+ e^+ e^-$                | 1.1                         | BaBar      | 2011 | [16] |
| BESIII COUID                                                                                                | $D^+ \rightarrow K^+ e^+ e^-$                  | 1.0                         | BaBar      | 2011 | [16] |
| make best<br>constraint on all<br>of the above e+e-<br>modes                                                | $D^+ \to \pi^+ \pi^0 e^+ e^-$                  |                             |            |      |      |
|                                                                                                             | $D^+ \rightarrow \pi^+ K^0_S e^+ e^-$          | In unit of 10 <sup>-6</sup> |            |      |      |
|                                                                                                             | $D^+ \to K^+ \pi^0 e^+ e^-$                    |                             |            |      |      |
|                                                                                                             | $D^+ \rightarrow K^+ \overline{K}{}^0 e^+ e^-$ |                             |            |      |      |

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_1.jpeg)

- Double Tag analysis
  - Absolute BFs
  - Event is very clean, bkg very low
  - High tagging efficiency
  - Many sys. uncertainties cancelled

![](_page_24_Picture_7.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

- Double Tag analysis
  - Absolute BFs
  - Event is very clean, bkg very low
  - High tagging efficiency
  - Many sys. uncertainties cancelled

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

PRD97, 072015 (2018) 1 1  $\mathbf{D^{+}}{\rightarrow \mathbf{K_{S}^{0}}}{\pi ^{+}}\mathbf{e^{+}}\mathbf{e^{-}}$  $D^{\text{+}} \rightarrow K^0_S K^{\text{+}} e^{\text{+}} e^{\text{-}}$  $D^+ \rightarrow \pi^+ \pi^0 e^+ e^ D^+ \rightarrow K^+ \pi^0 e^+ e^-$ 0.5 0.5 0.5 0.5 0 0 0.02 0.01 0.02 0.03 0.04 0.02 0.04 0.06 0.04 0.06 0 0 0 0 0.02 0.04 0.06 1 1 1  $D^0\!\!\rightarrow K^{*}K^{-}e^{+}e^{-}$  $D^0 \rightarrow \pi^+\pi^-e^+e^ D^0 \rightarrow K^- \pi^+ e^+ e^-$ L/L<sub>max</sub> 0.5 0.5 0.5 0 0 0.01 0.02 0.02 0.04 0.02 0.03 0.01 0.06 0.08 0 0 0 1 1 1 1  $D^0\!\!\rightarrow K^0_S e^+ e^ \textbf{D^0}\!\!\rightarrow \omega ~\textbf{e^+e^-}$  $D^0 \rightarrow \eta \ e^+e^ D^0 \rightarrow \pi^0 e^+ e^-$ 0.5 0.5 0.5 0.5 0 A 0.005 0.015 0.005 0.005 0 0.01 0.015 0 0.01 0.015 0 0.01 0 0.01 0.02 **B** ( $\times$  10<sup>-3</sup>)

The likelihood distributions for all the signal modes are shown above, the ULs on the signal BFs at the 90% CL are estimated by integrating the likelihood curves in the physical region of BF>0

#### **03 FCNC:** $D \rightarrow h(h')e^+e^-$

![](_page_28_Picture_4.jpeg)

![](_page_29_Picture_0.jpeg)

#### **03 FCNC:** $\psi(3686) \rightarrow \Lambda_c^+ \bar{p} e^+ e^- + c \cdot c$ .

- First search for  $\psi(3686) \rightarrow \Lambda_c^+ \bar{p} e^+ e^- + c \cdot c$ .
- Check  $M_{pK^-\pi^+}$  distribution, No events found in the signal window
- Upper limit at 90% C.L. on BF

 $\mathscr{B}(\psi(3686) \to \Lambda_c^+ \bar{p}e^+e^- + c.c.) < 1.7 \times 10^{-6}$ 

![](_page_30_Figure_6.jpeg)

![](_page_31_Picture_0.jpeg)

## Summary

![](_page_31_Picture_2.jpeg)

- Seven latest analyses (dark, BNV/LNV, FCNC) are introduced.
- Good electron/positron ID@BESIII, thus we have currently the best constraint on the channels with e+e- pair.
- Largest threshold charm data@BESIII, thus we have almost background free results with DT method.
- We have 10 B J/ψ data<sup>@11 Feb.</sup> which is nearly ready for navigation.
- More results on new physics@BESIII are coming soon.

![](_page_32_Picture_0.jpeg)

## Summary

![](_page_32_Picture_2.jpeg)

- Seven latest analyses (dark, BNV/LNV, FCNC) are introduced.
- Good electron/positron ID@BESIII, thus we have currently the best constraint on the channels with e+e- pair.
- Largest threshold charm data@BESIII, thus we have almost background free results with DT method.
- We have 10 B J/ψ data<sup>@11 Feb.</sup> which is nearly ready for navigation.
- More results on new physics@BESIII are coming soon.

## Thanks for your attention!

![](_page_33_Picture_1.jpeg)

![](_page_33_Figure_2.jpeg)