Recent results on tau lepton from *B*ABAR

NORMALE

Alberto Lusiani Scuola Normale Superiore and INFN, sezione di Pisa

on behalf of the BABAR Collaboration

- Introduction
- ► $\tau^- \to K^-(0, 1, 2, 3)\pi^0 \nu_{\tau}, \quad \tau^- \to \pi^-(3, 4)\pi^0 \nu_{\tau}, \quad BABAR$ preliminary, ICHEP 2018 ► $\tau^- \to K^- K_S^0 \nu_{\tau},$ Phys. Rev. D 98 (2018) no.3, 032010
- Implications for $|V_{us}|$ from $\tau^- o X_s^-
 u_{ au}$

BABAR detector at PEP-II, SLAC National Accelerator Laboratory

BABAR: CM energy, collected luminosity

Motivation

 $\overline{|V_{us}|}$ from $au o X_s
u_{ au}$

$$|V_{us}|_{\tau s} = \sqrt{R_s / \left(\frac{R_{VA}}{\left|V_{ud}\right|^2} - \delta R_{\text{theory}}\right)} \quad \text{where} \quad R_s = \frac{\mathcal{B}(\tau \to X_{s=1}\nu)}{\mathcal{B}(\tau \to e\bar{\nu}_e\nu_{\tau})} \quad R_{VA} = \frac{\mathcal{B}(\tau \to X_{s=0}\nu)}{\mathcal{B}(\tau \to e\bar{\nu}_e\nu_{\tau})}$$

E.Gamiz et al., JHEP 01 (2003) 060, E.Gamiz et al., PRL 94 (2005) 011803 significant part of experimental uncertainty from $\mathcal{B}(\tau^- \to K^-(0-3)\pi^0 \nu_{\tau})$

Alberto Lusiani, SNS & INFN Pisa - Phipsi19, BINP, Novosibirsk, Russia, 25 February - 1 March, 2019

Analysis method

- divide event in two hemispheres along thrust axis
- 1 identified e or μ in one hemisphere
- 1 oppositely charged π or K in other one

 $\tau^- \to K^-(0, 1, 2, 3) \pi^0 \nu_{\tau}, \quad \tau^- \to \pi^-(3, 4) \pi^0 \nu_{\tau}$

- no additional track
- from 0 to 4 $\pi^0
 ightarrow \gamma \gamma$
- no additional photon

suppress two-photon processes

$$\frac{p_T}{E_{\text{miss}}} = \frac{(\vec{p}_1^{\text{CM}} + \vec{p}_2^{\text{CM}})_T}{\sqrt{s} - p_1^{\text{CM}} - p_2^{\text{CM}}} > 0.2)$$

 suppress di-leptons requiring missing mass on event and on signal hemisphere

control samples

$$\tau^- \to \pi^-(n\pi^0)\nu_\tau, \quad n = 1, 2, 3$$

$$\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$$

Alberto Lusiani, SNS & INFN Pisa - Phipsi19, BINP, Novosibirsk, Russia, 25 February - 1 March, 2019

Recent results on tau lepton from BABAR

Selected events (full BABAR sample, 473.9 fb^{-1})

Selected mode	data	bkg from MC	ϵ from MC [%]
$ au^- o \mu^- \overline{ u}_\mu u_ au$	1075810	62364.0	0.74
$ au^- ightarrow \pi^- u_ au$	1473594	340960.0	1.278
$ au^- o \pi^- \pi^0 u_{ au}$	6742483	368918.5	3.28
$ au^- o \pi^- 2 \pi^0 u_ au$	1268108	75058.7	1.55
$ au^- o \pi^- 3 \pi^0 u_ au$	58598	9698.1	0.49
$ au^- o \pi^- 4 \pi^0 u_ au$	1706	729.5	0.12
$ au^- o K^- u_ au$	80715	18669.3	0.99
$ au^- o K^- \pi^0 u_ au$	146948	51983.2	2.16
$ au^- ightarrow K^- 2 \pi^0 u_ au$	17930	11128.8	1.34
$ au^- ightarrow K^- 3 \pi^0 u_ au$	1863	1467.7	0.13

π^{ν} efficiency correction, f. of momentum

- compare control channels $\tau^- \rightarrow t^- \nu_{\tau}$ with $\tau^- \rightarrow t^- \pi^0 \nu_{\tau}$ (track *t*: no PID except e^{\pm} -veto)
- correction factor (in p_{π^0} bins):

 $\eta = \frac{N(\tau^- \to t^- \pi^0 \nu_\tau)^{\rm data}}{N(\tau^- \to t^- \pi^0 \nu_\tau)^{\rm MC}} \frac{N(\tau^- \to t^- \nu_\tau)^{\rm MC}}{N(\tau^- \to t^- \nu_\tau)^{\rm data}}$

- η weight for each reconstructed π^0 in MC
- ▶ validated on $au^- o \pi^- 2\pi^0
 u_ au$ control sample

PID efficiency corrections, f. of momentum

- correct standard BABAR PID simulated efficiencies using data control samples for identifying π[±] as π[±], K[±] as K[±], and for mis-identifying π[±] as K[±]
- ▶ use control samples with 3-1-topology τ⁺τ⁻ events:
 - $\tau^{-} \to \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$ $\tau^{-} \to \pi^{-} K^{+} K^{-} \nu_{\tau}$
- identify 2 of the three tracks \Rightarrow third track is \sim pure identified sample

$\tau^- \to K^-(0, 1, 2, 3) \pi^0 \nu_{\tau}, \quad \tau^- \to \pi^-(3, 4) \pi^0 \nu_{\tau}$

Split-off correction

- not well modeled in MC
 - MC matches data for muon tracks
 - data eccess near pion tracks
- obtain correction factor to weight MC events with hadron track to reproduce extra photon veto efficiency on data using $\tau^- \rightarrow \pi^- \nu_{\tau}$ control sample:

$$\eta = \frac{N^{\text{data}}(d < 40 \text{ cm}) - N^{\text{MC}}(d < 40 \text{ cm})}{N^{\text{data}}}$$
$$w = 1 - \eta = 0.972 \pm 0.014$$

EMC neutral clusters vs. distance of closest track

Yields vs. signal track momentum for data and simulation

 $\tau^- \to K^-(0, 1, 2, 3) \pi^0 \nu_{\tau}, \quad \tau^- \to \pi^-(3, 4) \pi^0 \nu_{\tau}$

simulated events have all correction weights

11 / 25

Determine signal subtracting backgrounds and cross-feeds

 $\tau^- \to K^-(0, 1, 2, 3) \pi^0 \nu_{\tau}, \quad \tau^- \to \pi^-(3, 4) \pi^0 \nu_{\tau}$

- 1) subtract backgrounds other than from other signal channels using simulation
- 2) simultaneously determine signal and cross-feeds for the 6 signal channels
- migration matrix M_{ij}, estimated with MC simulation
 - M_{ij} : probability of reconstructing true produced signal *i* as candidate signal channel *j*
- ▶ obtain produced signal inverting M_{ij} : $N_i^{\text{prod}} = \left(M^{-1}\right)_{ij} \left(N_j^{\text{sel}} N_j^{\text{sel MC bkg}}\right)$
 - N^{prod}: true produced signal events
 - N_i^{sel}: number of selected data events
 - ▶ $N_i^{\text{sel MC bkg}}$: MC-estimated number of background events for channel j

► branching fractions are calculated as: $\mathcal{B} = 1 - \sqrt{1 - \frac{N^{\text{prod}}}{\mathcal{L}\sigma}}$

signal event defined as event with one or two signal decays (unconventional)

Results and systematic uncertainties BABAR preliminary

au - Decay mode	$K^- \nu_{\tau}$	$K^{-}\pi^{0}\nu_{ au}$	$K^{-}2\pi^{0}\nu_{\tau}$	$K^{-}3\pi^{0}\nu_{\tau}$	$\pi^{-}3\pi^{0}\nu_{\tau}$	$\pi^{-}4\pi^{0}\nu_{\tau}$
	$(\times 10^{-3})$	$(\times 10^{-3})$	$(\times 10^{-4})$	$(\times 10^{-4})$	$(\times 10^{-2})$	$(\times 10^{-4})$
Branching fraction	7.174	5.054	6.151	1.246	1.168	9.020
Stat. uncertainty	0.033	0.021	0.117	0.164	0.006	0.400
Syst. uncertainty	0.213	0.148	0.338	0.238	0.038	0.652
Total uncertainty	0.216	0.149	0.357	0.289	0.038	0.765
Stat. uncertainty [%]	0.46	0.41	1.91	13.13	0.52	4.44
Syst. uncertainty [%]	2.97	2.93	5.49	19.13	3.23	7.23
Total uncertainty [%]	3.00	2.95	5.81	23.20	3.27	8.48
€ _{signal} [%]	0.27	0.27	0.87	3.99	0.27	1.50
$\epsilon_{\rm bkg}$ [%]	0.15	0.15	0.87	6.32	0.11	1.67
Background B's[%]	0.18	0.30	1.44	11.52	0.21	3.49
BABAR PID [%]	0.15	0.11	0.18	0.71	0.08	0.20
Custom PID [%]	1.83	1.55	1.78	2.56	0.20	0.26
Muon mis-id [%]	1.48	0.01	0.00	0.00	0.00	0.00
n. of $\tau^+ \tau^-$ pairs $(\mathcal{L} \cdot \sigma)$ [%]	0.79	0.93	1.40	2.62	0.71	0.98
Track efficiency [%]	0.43	0.50	0.76	1.42	0.38	0.53
Split-off correction [%]	1.52	1.84	2.77	5.18	1.40	1.94
π^0 correction [%]	0.03	1.20	3.63	10.56	2.76	5.36
$\pi 5\pi^0 ightarrow \pi 4\pi^0$ migr. [%]	0.00	0.00	0.00	0.02	0.04	1.08
$K4\pi^0 ightarrow K3\pi^0$ migr. [%]	0.00	0.00	0.13	4.78	0.00	0.00

▶ additional systematics from signal and backgrounds MC production models being studied

Recent results on tau lepton from BABAR

 $\tau^- \to K^-(0, 1, 2, 3) \pi^0 \nu_{\tau}, \quad \tau^- \to \pi^-(3, 4) \pi^0 \nu_{\tau}$

Results BABAR preliminary $\mathcal{B}(\tau \rightarrow K$ CLEO 1994 $\mathcal{B}(\tau \to K^- \pi^0 \nu_{\tau})$ $\mathcal{B}(\tau \to \kappa^{-} 2\pi^{0} \nu_{\pi} \text{ (ex. } \kappa^{0}))$ 0.660 ± 0.070 ± 0.090 **DELPHI 1994** CI EO 1994 0.850 ± 0.180 $0.510 \pm 0.100 \pm 0.070$ AI EPH 1999 AI EPH 1999 $0.696 \pm 0.025 \pm 0.014$ $0.444 \pm 0.026 \pm 0.024$ OPAL 2001 OPAL 2004 CLEO 1994 $0.658 \pm 0.027 \pm 0.029$ $0.471 \pm 0.059 \pm 0.023$ 9 000 ± 10.000 ± 3.000 BaBar 2010 BaBar 2007 AI EPH 1999 ⊢ to be superseeded $0.692 \pm 0.006 \pm 0.010$ $0.416 \pm 0.003 \pm 0.018$ 5.600 ± 2.000 ± 1.500 HFLAV Spring 2017 HFLAV Spring 2017 HFLAV Spring 2017 0.696 ± 0.010 0.433 ± 0.015 6.398 ± 2.204 BaBar ICHEP 2018 BaBar ICHEP 2018 BaBar ICHEP 2018 0.717 ± 0.003 ± 0.021 $0.505 \pm 0.002 \pm 0.015$ $6.151 \pm 0.117 \pm 0.338$ [%] [×1E-4] 10 0.6 0.8

BABAR 2007 B(τ→K⁻π⁰ν_τ) measurement will be superseeded (less refined than this study)
 presented by T. Lueck at ICHEP 2018

Alberto Lusiani, SNS & INFN Pisa – Phipsi19, BINP, Novosibirsk, Russia, 25 <u>February – 1 March, 2019</u>

Branching fraction and spectral function of $\tau^- \rightarrow K^- K^0_S \nu_{\tau}$ (work by V. P. Druzhinin and S. I. Serednyakov)

Motivation

• measure spectral function $V(q) = \frac{m_{\tau}^8}{12\pi q(m_{\tau}^2 - q^2)(m_{\tau}^2 + 2q^2)|V_{ud}|^2} \frac{\mathcal{B}(\tau^- \to K^- K_S \nu_{\tau})}{\mathcal{B}(\tau^- \to e^- \nu_{\tau} \bar{\nu}_e)} \frac{1}{N} \frac{dN}{dq}$

- determine isovector part of $\sigma(e^+e^- \to K\bar{K})$, $\frac{d\sigma^{I=1}(e^+e^- \to K\bar{K})}{dq} = \frac{4\pi^2 \alpha^2}{a^2} V(q)$
- ► combine with BABAR and SND results on $\sigma(e^+e^- \to K^+K^-)$, $\sigma(e^+e^- \to K_SK_L)$
- ▶ obtain moduli of the isovector and isoscalar form factors and the relative phase between them can in a model-independent way (possibly use also for hadronic contribution to muon g-2)
- ▶ recent BR measurement by Belle, S.Ryu et al., Phys. Rev. D 89, 072009 (2014)
- ► CLEO measured the spectral function, T.E.Coan et al., Phys. Rev. D 53, 6037 (1996)

 $\tau^- \rightarrow K^- K^0_c \nu$

Event selection

- tag side: $au^- o oldsymbol{\ell}^- ar{
 u}_oldsymbol{\ell}
 u_ au$
 - require identified muon or electron

• signal side:
$$au^+ o K^+ K_S ar{
u}_ au$$

- require identified kaon
- require π⁺π⁻ compatible with K⁰_S, Lab K⁰_S decay length must be 1–70 cm
- \blacktriangleright suppress $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \mu^+\mu^-$
- \blacktriangleright suppress $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow B\bar{B}$
- ▶ invariant mass m(KK⁰_S) < 2.2 GeV</p>
- sum of photon energies < 2 GeV (bkg. with π⁰ subtracted later)
- \blacktriangleright selection efficiency $\approx 13\%$

▶ use data sidebands of K_S^0 peak, subtract background bin-by-bin in $m(K^-K_S^0)$ \Rightarrow independent of signal and bkg simulation (assume non- K_S^0 background linear in $m_{\kappa_s^0}$)

background fraction in selected candidates:

▶
$$\approx 10\%$$
 for $m_{\kappa^-\kappa_c}$ around 1.3 GeV/c

• up to 50% for
$$m_{K^-K_c} > 1.6 \,\text{GeV}/c^2$$

K_S^0 candidates mass

 $\tau^- \rightarrow K^- K^0_{\rm S} \nu_{\rm c}$

Subtraction of background with $>0\pi^0$

Main remaining background contributions

- $\tau^- \rightarrow K^- K_S \pi^0 \nu_{\tau}$ (79%);
- $\tau^- \rightarrow \pi^- K_S \nu_{\tau}$ (10%);
- $\blacktriangleright \tau^- \rightarrow \pi^- K_s \pi^0 \nu_{\tau}$ (3%)
- mis-id e/μ (7%), mainly from $\tau^- \rightarrow \pi^-(\pi^0)\nu_{\tau}$

Background subtraction, bin-by-bin

bin-by-bin candidates with 0 or >0 π^0 :

$$\triangleright >0 \pi^0: \quad N_{>0\pi^0} = \epsilon_s N_s + \epsilon_b N_b$$

$$0 \pi^0$$
: $N_{0\pi^0} = (1 - \epsilon_s) N_s + (1 - \epsilon_b) N_b$

- ϵ_{s} : eff. to reconstruct (fake) >0 π^{0} for signal events
- ϵ_{h} : eff. to reconstruct >0 for bkg's with π^{0}
- $\blacktriangleright \epsilon_s$ and ϵ_b from MC, with average data calibration
- solve for number of signal events N_S
- ~independent of signal/bkg MC simulation
- other bkg. without π^0 subtracted using MC

 $\tau^- \rightarrow K^- K_s^0 \nu$

π^0 candidates mass

Systematic uncertainties on the branching fraction

Sources	uncertainty (%)
Luminosity	0.5
Tracking efficiency	1.0
PID	0.5
non- K_S background subtraction	0.4
$\tau^+\tau^-$ background without π^0	0.3
$\tau^+\tau^-$ background with π^0	2.3
$q\bar{q}$ background	0.5
total	2.7

Alberto Lusiani, SNS & INFN Pisa - Phipsi19, BINP, Novosibirsk, Russia, 25 February - 1 March, 2019


```
Alberto Lusiani, SNS & INFN Pisa – Phipsi19, BINP, Novosibirsk, Russia, 25 February – 1 March, 2019
```

 $\tau^- \rightarrow K^- K^0_S \nu_{\tau}$

Impact on $|V_{us}|$ from $\tau^- \rightarrow X_s^- u_{ au}$

Recent results on tau lepton from BABAR

Impact on $|V_{us}|$ from $\tau^- \to X_s^- \nu_{\tau}$

$|V_{us}|$ from $\tau^- \rightarrow X_s^- \nu_{\tau}$, elaboration for PHIPSI 2019

▶ improved precision, small reduction of discrepancy vs. $|V_{us}|$ from CKM unitarity

23 / 25

Recent results on tau lepton from BABAR

Impact on $|V_{\mu s}|$ from $\tau^- \rightarrow X_s^- \nu_{\tau}$

Impact on $|V_{us}|$ from $\tau \to X_s \nu_{\tau}$

significant improvements on several modes reported by BABAR at ICHEP 2018

several modes still need improvements

Alberto Lusiani, SNS & INFN Pisa – Phipsi19, BINP, Novosibirsk, Russia, 25 February – 1 March, 2019

Summary

► BABAR measured

- ► $\tau^- \to K^-(0, 1, 2, 3)\pi^0 \nu_{\tau}, \quad \tau^- \to \pi^-(3, 4)\pi^0 \nu_{\tau}, \quad BABAR \text{ preliminary, ICHEP 2018}$ best results except for $\tau^- \to K^- \nu$
- τ⁻ → K⁻K⁰₅ν_τ, Phys. Rev. D 98 (2018) no.3, 032010 comparable precision of recent Belle measurement,
 S. Ryu et al. (Belle Collaboration), Phys. Rev. D 89, 072009 (2014) much more precise spectral function than before (CLEO)

•
$$|V_{us}|$$
 from $\tau^- \to X_s^- \nu_{\tau}$

- precision improved
- ▶ small reduction on $\sim 3\sigma$ discrepancy w.r.t. CKM unitarity $|V_{us}|$ determination

Backup Slides

	and the second	

Numerical results for the spectral function of $\tau \to K^- K_S \nu_{\tau}$

$m_{K^-K_S}({ m GeV/c^2})$	$N_s/N_{tot} \times 10^3$	$V imes 10^3$
0.98 - 1.02	5.6 ± 1.4	$0.071 \pm 0.018 \pm 0.006$
1.02 - 1.06	26.0 ± 2.7	$0.331 \pm 0.034 \pm 0.026$
1.06 - 1.10	46.0 ± 3.2	$0.593 \pm 0.042 \pm 0.042$
1.10 - 1.14	70.8 ± 3.5	$0.934 \pm 0.046 \pm 0.056$
1.14 - 1.18	84.4 ± 3.4	$1.148 \pm 0.047 \pm 0.057$
1.18 - 1.22	92.3 ± 3.3	$1.309 \pm 0.046 \pm 0.052$
1.22 - 1.26	98.2 ± 3.2	$1.468 \pm 0.048 \pm 0.044$
1.26 - 1.30	98.4 ± 3.2	$1.569 \pm 0.050 \pm 0.042$
1.30 - 1.34	96.3 ± 3.0	$1.663 \pm 0.052 \pm 0.042$
1.34 - 1.38	90.2 ± 2.9	$1.715 \pm 0.052 \pm 0.039$
1.38 - 1.42	87.8 ± 3.1	$1.873 \pm 0.066 \pm 0.039$
1.42 - 1.46	65.1 ± 2.6	$1.597 \pm 0.064 \pm 0.032$
1.46 - 1.50	57.3 ± 2.5	$1.666 \pm 0.073 \pm 0.032$
1.50 - 1.54	38.1 ± 2.5	$1.361 \pm 0.090 \pm 0.023$
1.54 - 1.66	36.9 ± 2.4	$0.785 \pm 0.049 \pm 0.013$
1.66 - 1.78	6.6 ± 10.2	$0.986 \pm 1.520 \pm 0.014$

uncertainties are statistical and systematic

Event selection for $\tau^- \to K^- K^0_S \nu_{\tau}$

Selection requirements

- 4 tracks from IP (total charge zero)
- Particle IDentification (PID) for lepton (e[±] or μ[±]) and kaon (opposite charge)
- ▶ quality cuts on track momentum and angle: good PID; and reject $e^+e^- \rightarrow e^-e^+$ and $e^+e^- \rightarrow \mu^-\mu^+$
- ▶ remaining tracks: $K_S \rightarrow \pi^- \pi^+$ with $m_{\pi\pi}$ within 25 MeV of $m(K_S)$
- flight length of $K_S > 1cm$
- $\sum E_{neutral} < 2GeV$
- Thrust > 0.875 (charged tracks)
- angle KK_S lepton > 110°

Selection efficiency vs. m_{KK_s}

• average selection efficiency $\approx 13\%$

Subtraction of non- K_S background

K_S candidates mass

Event Selection for
$$\tau^- \rightarrow h^- n \pi^0 \nu_{\tau}$$

- ▶ two oppositely charg. tracks from IP: PID ℓ^{\pm} (tag), K^{\pm} or π^{\pm} (sig.)
- \blacktriangleright reconstruct up to 4 $\pi^0
 ightarrow \gamma\gamma$
- reject events with additional photons
- several track and photon quality cuts: ensure good PID; reject bkg
- 0.88 < thrust of event T < 0.99
- angle between lepton and signal hadron > 2.95 rad
- ▶ cuts on missing mass of event and signal au-decay to reject bkg. $(e^+e^- o \ell^+\ell^-)$

► reject two-photon events: $\frac{p_T}{E_{miss}} = \frac{(\vec{p}_1^{CM} + \vec{p}_2^{CM})_T}{\sqrt{s} - p_1^{CM} - p_2^{CM}} > 0.2$

$|V_{us}|$ error bugdet before and after the BABAR 2018 results

