

Status of R value measurement at BESIII

Haiming HU

(For BESIII Collaboration)

February 27, 2019

Институт ядерной физики имени Г. И. Будкера СО РАН N*Новосибирский государственный университет *настоящая наука

Outline

- Review of R value measurements
- Data samples of R scan @ BESIII
- Status of R value measurement
- Summary

What is R Value

The Born cross section of e^+e^- annihilation into hadrons normalized by theoretical $\mu^+\mu^-$ cross section.

$$R = \frac{\sigma_{had}^{0}(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow \text{hadrons})}{\sigma_{\mu\mu}^{0}(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+}\mu^{-})}$$

Feynman diagram of R value

Groups ever measured R value: BESII, VEPP, DA Φ NE, DM2, DASP, PLUTO, Crystal-Ball, MARKI, MARKII, CLEO-c, AMY, JADE, TASSO, CUSB, MD-1, MARKJ, SLAC-LBL, MAC, $\gamma\gamma2$, KEDR.....

Why R value important? It is an input parameter of the SM

PDG2000

- Few groups
- Few energy points
- Large errors
- Ambiguous line-shape

 KEDR's results included: Physics Letters B 788 (2019) 42–51 • $R_{uds} \approx R_{pQCD}$ at 2 GeV

6

KEDR: Physics Letters B 788 (2019) 42-51

Summary table of KEDR results, Actual energies and measured R values,

Point	Energy	$R_{uds}(s)\{R(s)\}$	σ/R	R
Data 2010 [16]				
1	1841.0 ± 2	$2.226 \pm 0.139 \pm 0.158$	9.45 %	4
2	1937.0 ± 2	$2.141 \pm 0.081 \pm 0.073$	5.09 %	
3	2037.3 ± 2	$2.238 \pm 0.068 \pm 0.072$	4.43 %	
4	2135.7 ± 2	$2.275 \pm 0.072 \pm 0.055$	3.98 %	
5	2239.2 ± 2	$2.208 \pm 0.069 \pm 0.053$	3.94 %	3
6	2339.5 ± 2	$2.194 \pm 0.064 \pm 0.048$	3.65 %	
7	2444.1 ± 2	$2.175 \pm 0.067 \pm 0.048$	3.79 %	
8	2542.6 ± 2	$2.222 \pm 0.070 \pm 0.047$	3.79 %	
9	2644.8 ± 2	$2.220 \pm 0.069 \pm 0.049$	3.81 %	2
10	2744.6 ± 2	$2.269 \pm 0.065 \pm 0.050$	3.61 %	
11	2849.7 ± 2	$2.223 \pm 0.065 \pm 0.047$	3.60 %	
12	2948.9 ± 2	$2.234 \pm 0.064 \pm 0.051$	3.66 %	
13	3048.1 ± 2	$2.278 \pm 0.075 \pm 0.048$	3.91 %	
Combined Data 201	1 [15] and 2014 (this work)			
14	3076.7 ± 0.2	$2.188 \pm 0.056 \pm 0.042$		
15	3119.6 ± 0.4	2.212{2.235} ± 0.042 ±	0.049	2.92 %
16	3222.5 ± 0.8	2.194(2.195) ± 0.040 ±	0.035	2.42 %
17	3314.7 ± 0.6	2.219(2.219) ± 0.035 ±	0.035	2.23 %
18	3418.3 ± 0.3	2.185(2.185) ± 0.032 ±	0.035	2.17 %
19	3499.6 ± 0.4	2.224(2.224) ± 0.054 ±	0.040	3.02 %
20	3520.8 ± 0.4	2.200(2.201) ± 0.050 ±	0.044	3.03 %
21	3618.2 ± 1.0	2.212(2.218) ± 0.038 ±	0.035	2.34 %
22	3719.4 ± 0.7	$2.204 \{2.228\} \pm 0.039 \pm$	0.042	2.60 %

- Small N_{had} < 1000
- $\sigma_{sta} \sim \sigma_{sys}$
- Small total error !

R value measurements at BESII

8

Data samples of R scan at BESIII

Main projects of BESIII Physics

Status of R&QCD data taking

• Phase I: test run (2012)

@ Ecm = 2.232, 2.400, 2.800, 3.400 GeV, 4 energy points, ~12/pb

- Phase II: fine scan for heavy charmonium line shape (2014)
 @ 3.800 4.590 GeV, 104 energy points, ~ 800/pb
- Phase III: R&QCD scan (2015)
 @ 2.000 3.080 GeV, 21 energy points, ~ 500/pb

R value line shape has scanned in whole BEPCII energies.

Status of R value measurement

R value measurement with data

In experiment, R values are measured with

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

Tasks in experiment:

- N_{had} observed hadronic events
- **N**_{bg} background events
- *L* integrated luminosity
- *Ehad* detection efficiency for hadronic events
- $1+\delta$ radiative correction factor
- $\sigma_{\mu\mu}$ Born cross section of μ pair production in QED

The efficiency and ISR factor correction

Present status of R value measurement

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

 N_{had} , $N_{bg} \rightarrow \ {\rm event \ selection}$:

below open charm finished, above open charm in progress.

 $L \rightarrow$ integrated luminosity:

finished, error ~ 1%.

 $\varepsilon_{had} \rightarrow$ hadronic generator: LUARLW:

parameters are tuned, cross checks, large systematic error source?

 $1+\delta \rightarrow$ theoretical calculations:

finished, error < 1.5%, including contribution of $\Delta \sigma^{0}_{had}$

Error analysis:

$$\frac{\Delta R}{R} \cong \sqrt{(\frac{\Delta \tilde{N}_{had}}{\tilde{N}_{had}})^2 + (\frac{\Delta L}{L})^2 + (\frac{\Delta \epsilon_{trg}}{\epsilon_{trg}})^2 + (\frac{\Delta (1+\delta)}{(1+\delta)})^2}$$

• final goal $\Delta R/R \sim 2.5 - 3.0\%$.

• Results below open charm being reviewed in BESIII Collaboration.¹⁵

Radiative correction

Initial state radiation correction

• Feynman diagrams for $e^+e^- \rightarrow (\gamma)$ hadrons up to $\mathcal{O}(\alpha) \sim 1\%$

• ISR error

- (1) theory uncertainty $\mathcal{O}(\alpha) \sim 1\%$
- (2) $\sigma^0(s) \pm \Delta_{\sigma}$ experimental & pQCD errors $\leq 1\%$ $\Delta(1+\delta)$

Nucl. Inst.rum Meth. 128 (1975)13

References:

G.Bonneau Nucl. Phys. B27, (1971) 281-397 F.A.Berends Nucl. Phys. B178, (1981)141-150 A.Osterfeld SLAC-PUB-4160(1986) **C.Edwards** SLAC-PUB-5160(1990) (T/E) CPC (HEP&NP)25,(2001)701

$$\int_{0}^{\infty} dx F_{FD}(x;s) \frac{\sigma^{0}(s')}{|1 - \Pi(s')|^{2}}$$

$\sqrt{s}(\text{GeV})$	ISR (Feynman diagram)
2.2324	1.197±0.015 (1.25%)
2.4000	1.205±0.015 (1.22%)
2.8000	1.224±0.014 (1.17%)
3.0500	1.200±0.013 (1.12%)
3.0600	1.189±0.013 (1.12%)
3.0800	1.133±0.013 (1.16%)
3.4000	1.413±0.015 (1.07%)
3.5000	1.382±0.018 (1.29%)
3.5424	1.373±0.017 (1.25%)
3.5538	1.369±0.017 (1.22%)
3.5611	1.367±0.017 (1.22%)
3.6002	1.357±0.016 (1.20%)
3.6500	1.332±0.016 (1.23%)
3.6710	1.281±0.015 (1.15%)

17

Theoretic cross section and ISR factor

• FD and SF are consistent within theoretical accuracy in non-resonant region

Hadronic generator

The generators used in R measurement

Simulation of hadron production and decay

LUARLW

hep-ph/9910285

Few-Body States in Lund String Fragmentation Model

Bo Andersson¹, Haiming Hu^{1,2}

¹Department of Theoretical Physics, University of Lund, Sölvegatan 14A, 22362 Lund, Sweden ² Institute of High Energy Physics, Academia Sinica, Beijing 10039, China E-mail: bo@thep.lu.se

Abstract

The well-known Monte Carlo simulation packet JETSET is not built in order to describe few-body states (in particular at the few GeV level in e^+e^- annihilation as in BEPC). In this note we will develop the formalism to use the basic Lund Model area law directly for Monte Carlo simulations.

Simulation functions of LUARLW

LUARLW can simulate ISR inclusive continuous channels and $J^{PC} = 1^{-1}$ resonances from $2m_{\pi}$ –5 GeV, parameters need tuning by data.

$$\begin{split} e^+e^- \Rightarrow \gamma^* \Rightarrow \begin{pmatrix} q\bar{q} \Rightarrow \text{string} \Rightarrow \text{hadrons} \\ gq\bar{q} \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ ggq\bar{q} \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ ggq\bar{q} \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ e^+e^- \Rightarrow \gamma^* \Rightarrow \begin{pmatrix} \gamma^* \Rightarrow e^+e^-, \ \mu^+\mu^-, \ \tau^+\tau^- \\ \gamma^* \Rightarrow q\bar{q} \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ ggg \Rightarrow \gamma^* \Rightarrow \psi(2S) \Rightarrow \begin{cases} \gamma^* \Rightarrow e^+e^-, \ \mu^+\mu^-, \ \tau^+\tau^- \\ \gamma^* \Rightarrow q\bar{q} \Rightarrow \text{string} + \text{string} + \text{string} \Rightarrow \text{hadrons} \\ \gamma gg \Rightarrow \gamma^+ \text{string} + \text{string} \Rightarrow \gamma^+ \text{hadrons} \\ \pi^+\pi^-J/\psi, \ \pi^0\pi^0J/\psi, \ \pi^0J/\psi, \ \eta J/\psi, \ \gamma\chi_{eJ}, \ \phi\eta \end{cases} \begin{cases} \gamma^* \Rightarrow e^+e^-, \ \mu^+\mu^-, \ \tau^+\tau^- \\ D^0\bar{D}^0, \ D^+\bar{D}^- \\ \gamma^* \Rightarrow q\bar{q} \Rightarrow \text{string} \Rightarrow \text{hadrons} \\ ggg \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ ggg \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ e^+e^- \Rightarrow \gamma^* \Rightarrow \begin{cases} \psi(4040) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*, D_s^*\bar{D}_s^*, \\ \psi(415) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, D\bar{D}^*, D\bar{D}, n_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*. \end{cases} \end{cases} \end{cases}$$

 $e^+e^- \Rightarrow \gamma^* \Rightarrow X(4160), X(4260) \cdots$ with $J^{PC} = 1^{--}$

Picture of Lund string fragmentation to hadrons

arXiv:hep-ph/9910285 Few-Body States in Lund String Fragmentation Model

24

Basic formula of LUARLW

The lowest cross section for the exclusive channel

$$\sigma(e^+e^- \to m_1, m_2, \cdots m_n) = \int d\Omega_{q\bar{q}} \frac{d\sigma(e^+e^- \to q\bar{q})}{d\Omega_{q\bar{q}}} \cdot \wp_n(q\bar{q} \to m_1, m_2, \cdots m_n; s)$$

The QED cross section for quark pair production

$$rac{d\sigma(e^+e^- o qar q)}{d\Omega_{qar q}} = N_c rac{lpha^2}{4s} \cdot e_q^2 eta [1 + \cos^2 heta + (1 - eta^2) \sin^2 heta]$$

The string fragmentation probability in Lund area law

$$\begin{split} d\varphi_{n}(q\bar{q} \rightarrow m_{1}, m_{2}, \cdots m_{n}; s) &= \cdot (2\pi)^{4} \delta(1 - \sum_{j=1}^{n} \frac{m_{\perp j}^{2}}{sz_{j}}) \cdot \delta(1 - \sum_{j=1}^{n} z_{j}) \cdot \delta^{(2)}(\sum_{j=1}^{n} \vec{k}_{j}) \cdot \overline{\sum} |\hat{\mathcal{T}}_{con}^{(n)f}|^{2} d\Phi_{n} \\ d\Phi_{n} &= \prod_{j=1}^{n} d^{2} \vec{k}_{j} \frac{dz_{j}}{z_{j}} \\ \hat{\mathcal{T}}_{con}^{(n)f}(q\bar{q} \rightarrow m_{1}, m_{2}, \cdots m_{n}) &\equiv \hat{\mathcal{T}}_{con}^{(n)f} = \cdot N^{n} \cdot \hat{\mathcal{T}}_{con\perp}^{(n)f} \cdot \hat{\mathcal{T}}_{con//}^{(n)f} \\ \hat{\mathcal{T}}_{con\perp}^{(n)f} &= \exp(-\sum_{j=1}^{n} \vec{k}_{j}^{2}) \\ \hat{\mathcal{T}}_{con//}^{(n)f} &= \exp(i\xi\mathcal{A}_{n}) \cdot \frac{\xi}{\xi} = \frac{1}{2\kappa} + i\frac{b}{2} \cdot \frac{1}{2\kappa} \end{split}$$

0

ISR sampling in LUARLW simulation

In LUARLW simulation, the events are classed into two types

non real radiation: tree level, virtual and soft radiations events.

Weight: $\sigma^{VSB} = \sigma^0(s) [1 + \beta \ln k_0 + \delta_{AR}] - \left\{ \begin{array}{c} & & \\$

2 real radiation: hard bremsstrahlung events.

The energy and polar angle distribution of real emission photon

Bremsstrahlung at ρ , ϕ , ω region important

- $R(s')/\sigma^{0}(s')$ are large in ρ , ω , ϕ region
- A lot of events with small polar angles θ_{γ} and lower effective energies production
- These two factors are sensitive to hadronic efficiency
- The simulation in ρ , ω , ϕ region and at small polar angles must be correctly ²⁷

Effective hadronic E'_{cm} distributions after ISR

28

Examples of event production

 $e^+e^- \rightarrow \gamma \ string \rightarrow \gamma \ + \ handrons$

	Ι	particle		KS	KF	orig	p_x	p_y	p_z	E	m
Initial <i>e</i> [±] -	1	(e-)		12	11	0	0.00000	0. 00000	1.75064	1.75064	0. 00051
	2	(e+)		11	-11	0	0.00000	0.00000	-1.75064	1.75064	0.00051
ISR photon 🛁	> 3	gamma		1	22	1	0.00000	0.00000	0.00027	0.00027	0.00000
Virtual photor	ן 4	!gamma!		21	22	1	0.00000	0.00000	-0. 00027	3. 50102	3. 50102
Initial quarks-	5	(u)	А	12	2	4	-0. 81059	-1.26438	-0. 89932	1.75058	0.00560
illitiai qualks	6	(u~)	V	11	-2	4	0.81059	1.26438	0.89905	1.75044	0.00560
string	> 7	(string)		11	92	5	0.00000	0. 00000	-0. 00027	3. 50102	3. 50102
	8	(rho0)		11	113	7	-0. 41409	-0. 63658	-0. 42688	1. 10547	0. 68053
four primary _	9	(pi0)		11	111	7	0.12991	0. 04146	-0. 16074	0.25031	0.13500
hadrons	10	pi-		1	-211	7	0.95775	0. 09180	0.34886	1.03291	0.13960
	-11	(rho+)		11	213	7	-0. 67078	0. 50366	0.23898	1. 11539	0.69524
(12	pi+		1	211	8	-0. 17152	-0. 39729	-0. 54910	0.71293	0.13960
	13	pi-		1	-211	8	-0. 24499	-0. 23868	0.12616	0.39038	0.13960
	14	pi+		1	211	11	-0. 38799	-0. 03838	0. 25920	0. 48855	0.13960
final	15	(pi0)		11	111	11	-0. 28317	0. 54110	-0. 02465	0.62594	0.13500
particles	16	gamma		1	22	9	0. 14913	0. 00954	-0. 14955	0.21141	0.00000
	17	gamma		1	22	9	-0. 01922	0. 03192	-0. 01119	0.03890	0.00000
	18	gamma		1	22	15	-0.08214	0.30218	-0.00762	0. 31323	0.00000
l	19	gamma		1	22	15	-0. 20103	0.23892	-0. 01703	0. 31271	0.00000
				sum:	0.00		0.00000	0.00000	0.00000	3. 50128	3. 50128 ²⁹

Five modes of J/ψ decays

Hadronic decay via 3-gluons

Electromagnetic decay to hadrons

Radiative decay into hadrons

Radiative M1 transition to η_{c}

Electromagnetic decay to leptons

All five decay modes have been included in LUARLW

Examples of event production

 $e^+e^- \rightarrow \gamma c \bar{c} \rightarrow \gamma J/\psi \rightarrow \gamma ggg \rightarrow \gamma + string + string \rightarrow \gamma hadrons$

CPC (HEP&NP)27,(2003)673	Ι	particle	•	KS	KF	ori	g	p_x	p_y	p_z	Е	m
	1	!e-!		21	11	0	0.	00000	0.00000	1.75042	1.75042	0.00051
	2	!e+!		21	-11	0	0.	00000	0.00000	-1. 75042	1.75042	0.00051
	3	gamma		1	22	2	0.	00164	0.00124	-0. 38074	0.38075	0.00000
	4	!gamma!		21	22	1	-0.	00164	-0.00124	0.38074	3. 12010	3.09678
C CONTRACT	5	(c)	А	12	4	4	-0.	00082	-0.00062	0.19037	1.56005	1.35000
J/ψ _) ~ (\geq hadrons	6	(c~)	V	11	-4	4	-0.	00082	-0.00062	0.19037	1.56005	1.35000
c miles	7	!J/psi!		21	443	6	-0.	00164	-0.00124	0.38074	3. 12010	3.09678
	8	(g)	А	11	21	7	-0.	67757	-0. 50643	0.62514	1.05150	0.00000
	9	(g)	V	11	21	7	-0.	35183	-0. 32003	0.38129	0.60958	0.00000
1	10	(g)	А	11	21	7	1.	02775	0.82522	-0. 62569	1.45902	0.00000
I	11	(d)	Ι	12	1	8	0.	11116	0.05805	0.34162	0.36404	0.00990
1	12	(ď~)	Ι	12	-1	8	-0.	78873	-0. 56448	0.28352	0.68744	0.00990
1	13	(u)	Ι	12	2	9	0.	10741	-0.15372	0.23751	0.30267	0.00560
I	14	(u~)	Ι	12	-2	9	-0.	45923	-0. 16631	0.14378	0. 30791	0.00560
1	15	(u)	Ι	12	2	10	-0.	00756	-0. 04922	-0.34974	0.35331	0.00560
1	16	(u~)	V	11	-2	10	1.	03531	0.87444	-0. 27594	1. 10562	0.00560
1	17	(string)		12	92	11	-0.	34807	-0. 10825	0.48540	0.67196	0.28817
1	18	(string)		12	92	13	1.	14271	0.72072	-0. 03844	1. 40829	0.39571
1	19	(string)		11	92	15	-0.	79628	-0.61370	-0.06622	1.04075	0.26092
2	2 0	gamma		1	22	17	-0.	16538	-0. 14885	0.30172	0. 37489	0.00000
2	21	pi-		4	-211	17	-0.	18269	0.04060	0.18368	0.29707	0.13960
2	22	pi+		4	211	18	0.	74416	0.33866	-0. 10029	0.83548	0.13960
2	23	pi-		4	-211	18	0.	39855	0.38205	0.06185	0. 57282	0.13960
2	24	gamma		1	22	19	-0.	37813	-0. 20584	-0.08947	0. 43973	0.00000
2	25	pi+		4	211	19	-0.	41816	-0.40786	0. 02325	0.60102	0.13960
				sum:	0.00		0.	00000	0.00000	0.00000	3. 50175	3. 50175

31

Tuning of LUARLW parameters

• Generator contributes the dominant systematic error

• Main parameters	parameter	default	tuned	meaning
• Main parameters:	<i>c</i> ₀	-	5.0	parameter in preliminary hadron multiplicity distribution $P_n(s)$
	<i>c</i> ₁	-	0.05	parameter in preliminary hadron multiplicity distribution $P_n(s)$
	<i>c</i> ₂	-	-0.25	parameter in preliminary hadron multiplicity distribution $P_n(s)$
For multiplicity	α	-	1.25	parameter α in $\mu = \alpha + \beta \exp(\gamma \sqrt{s})$
For multiplicity	β	-	0.27	parameter β in $\mu = \alpha + \beta \exp(\gamma \sqrt{s})$
	γ	-	0.95	parameter γ in $\mu = \alpha + \beta \exp(\gamma \sqrt{s})$
	σ_{\perp}	-	Ecm-dependent	effective transverse momentum width in like-Gaussian form
	PARJ(01)	0.10	Ecm-dependent	diquark/quark production ratio, baryon suppression (B/M)
	PARJ(02)	0.30	Ecm-dependent	s/(u,d) production ratio, strange meson suppression (K/π)
	PARJ(03)	0.40	Ecm-dependent	strange diquark suppression, strange baryon suppression (Λ/p)
	PARJ(04)	0.05	0.05	suppression of spin 1 diquark compared to spin 0 ones
	PARJ(05)	0.50	0.50	relative occurence of baryon produced by BMB and by BB
For Doutials notice	PARJ(06)	0.50	0.50	suppression for having $s\bar{s}$ shared by B and B of BMB situation
For Particle ratios	PARJ(07)	0.50	0.50	suppression for having strange meson M in $BM\bar{B}$ configuration
\sim	PARJ(11)	0.50	Ecm-dependent	suppression of light meson has spin 1 compared to spin 0 (ρ/π)
	PARJ(12)	0.60	0.70	suppression of strange meson of spin 1 compared to spin 0 (K^*/K)
	PARJ(13)	0.75	0.75	suppression of charm meson of spin 1 compared to spin 0 (D^*/D)
	PARJ(14)	0.00	0.09	probability that spin $s=0$ and orbital $L=1$ with total $J=1$ meson
	PARJ(15)	0.00	0.07	probability that spin $s=1$ and orbital $L=1$ with total $J=0$ meson
	PARJ(16)	0.00	0.08	probability that spin $s=1$ and orbital $L=1$ with total $J=1$ meson
	PARJ(17)	0.00	0.10	probability that spin $s=1$ and orbital $L=1$ with total $J=2$ meson
	••••			

• Great efforts have been done on LUARLW parameter tuning

• LUARLW tuning/check in progress, reviewed in BESIII Collaboration

Tuning of mixing-generator

Multi-parameters tuning: $f(p_0 + \delta p, x) = a_0^{(0)}(x) + \sum_{i=1}^n a_i^{(1)}(x)\delta p_i + \sum_{i=1}^n \sum_{j=1}^n a_{ij}^{(2)}(x)\delta p_i \delta p_j$

+ total hadronic cross section,
+ sum of the cross section ever measured exclusive channels

Unknown channels, simulate by LUARLW

Known channels, simulate by exclusive method

Comparison of data and mixing generator

Fig. 5. Comparison of data to the MC distributions at 3.06 GeV, where the MC sample is produced with the optimized parameters. (a) multiplicity of charged tracks, (b) cosine of polar angle of charged tracks, . (c) Energy of charged tracks, (d) multiplicity of photon, (e) energy of photon, (f) cosine of polar angle of photons, (g)azimuthal distribution, (h) pseudorapidity and (g) thrust. Where the points with errors are data, and shaded histogram is MC distribution.

Generator/MC systematic errors

Selection efficiency for hadronic events

$$\bar{\epsilon}_{hd} = \frac{N_{obs}^{MC}}{N_{gen}^{MC}}$$

Number of hadronic events produced at collider vertex

- $\tilde{N}_{had} = \frac{N_{had}}{\overline{\epsilon}_{had}}$ Experiment independent Proportional to physics total cross section

Combined error of event selection and MC simulation

$$\Delta \tilde{N}_{had} = \Delta (\frac{N_{obs}^{dat}}{\bar{\epsilon}_{had}})_{\rm cuts}$$

Consideration: \star event selection \Rightarrow cuts \bigstar cuts \Rightarrow errors \bigstar good MC $\Rightarrow \Delta \widetilde{N}_{had}$ small

Data and MC are coincident with cuts

Source	Cut
veto Bhabha	E_{ratio}
and $\gamma\gamma$	$\Delta heta$
good hadronic	Vr
tracks	p(track)
determination	dE/dx cut
	E/p ratio
	Bhabha momentum limit
	isolated photon angle
	isolated photon energy
	gamma conversion angle
	gamma conversion mass
	PID ratio value
2 prong events	$\Delta heta$
	$\Delta \phi$
3 prong events	$\Delta heta$
	$\Delta \phi$
others	backgrounds

Summary

- The data sets for R value measurements between 2.0 4.6 GeV at about 130 energies have been collected.
- The integrated luminosity at all energy points are measured with about 1% precision.
- The parameters of generator LUARLW are optimized and tuned
- The mixing-generator are tuned and compared
- The memo of R value measurement between 2.232–3.671 GeV is being reviewed in BES Collaboration.
- The data analysis for 3.85 4.59 GeV at 104 energies are in progress.

Back Up

R scan below open charm

Data samples between 2.0 – 3.08 GeV collected in 2015

E_{cm}	E_{th}	LNeeded	t_{beam}	Purpose
(GeV)	(GeV)	(pb^{-1})	(days)	
2.0		≥ 8.95	14.6	Nucleon FFs
2.1		10.8	14.8	Nucleon FFs
2.15		2.7	2.29	Y(2175)
2.175		10(+)	8.5	Y(2175)
2.2		13	11	Nucleon FFs, $Y(2175)$
2.2324	2.2314	11	4	Hyp threshold $(\Lambda \overline{\Lambda})$
2.3094	2.3084	20	16	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^0\overline{\Lambda})$
2.3864	2.3853	20	8.7	Hyp Threshold $(\Sigma^0 \overline{\Sigma}^0)$
				Hyp FFs
2.3960	2.3949	≥ 64	27.8	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^{-}\overline{\Sigma}^{+})$
2.5		0.4895	8h	R scan
2.6444	2.6434	65	18	Nucleon & Hyp FFs
				Hyp Threshold $(\Xi^{-}\overline{\Xi}^{+})$
2.7		0.5542	4.2h	R scan
2.8		0.6136	4h	R scan
2.9		100	18.5	Nucleon & Hyp FFs
2.95		15	2.8	$m_{p\bar{p}}$ step
2.981		15	2.8	η_c , $m_{par{p}}$ step
3.0		15	2.8	$m_{p\bar{p}}$ step
3.02		15	2.8	$m_{p\bar{p}}$ step
3.08		120	13.2	Nucleon FFs $(+30 \text{ pb}^{-1})$

4. New hadronic states ?

R line shape scan above open charm

- 104 energy points, total luminosity ~ 800 pb⁻¹;
- More than100k hadronic events collected at each point.

Section/nb Online Cross