

BEPCII and BESIII Status and Plans

Chengping Shen for BESIII Collaboration

The International Workshop "e+e- Collisions From Phi to Psi 2019", Novosibirsk, Russia, February 25 to March 1. 2019

BEPC

- A multi-bunch e⁺ e⁻ collider running at the tau-charm energy range
- Double rings design
- Luminosity (1×10^{33} cm⁻²s⁻¹, design goal) was achieved in April, 2016

Operation schedule

From	То	Task	Duration
2018.09.25	2018.09.30	Machine recovery	6 days
2018.10.01	2018.11.11	synchrotron radiation (SR) operation	42 days
2018.11.12	2018.11.16	Switch to collision operation	5 days
2018.11.17	2019.02.11	Data taking @J/ψ	87 days
2019.02.12	2019.06.20	Data taking @ XYZ	128 days
2019.06.21	2019.06.23	Switch to SR operation	3 days
2019.06.24	2019.07.25	SR operation	32 days
2019.07.26	2019.10.23	Summer shutdown	90 days
2019.10.24	2019.11.06	Machine recovery	14 days
2019.11.07	2019.12.12	SR operation	36 days
2019.12.13		Switch to collision operation	

- The BESIII detector finished accumulating a sample of 10 billion J/ψ events together with a continuum data sample on Feb. 11.
- Will accumulate ~3.9fb⁻¹ XYZ data in 128 days. (~30 pb⁻¹/day: a challenge to the machine)
- Summer shutdown for energy upgrade: Data taking @ E_{beam} >2GeV

BESIII Accumulates 10 Billion J/ ψ Events

- The 10 billion J/ ψ -event sample accumulated at BESIII is the world's largest data sample produced directly from electron-positron annihilations.
- The 10 billion J/ψ -event data sample makes the measurements of exotic hadrons in much improved precision and the searches for new processes in much improved sensitivity possible.
- During the data acquisition, the peak luminosity of BEPCII reached 4.7×10^{32} cm⁻²s⁻¹, which is about 100 times higher than that of BEPC.
- With the unique advantage of an unprecedented high-statistics J/ψ sample, BESIII will continue to play a leading role in research for new forms of hadronic matter in the high-precision frontier.

Highlights

BESIII Accumulates 10 Billion J/ψ Events

The BESIII detector finished accumulating a sample of 10 billion J/ψ events together with a continuum data sample on Feb. 11. The 10 billion J/ψ -event sample accumulated at BESIII is the world's...

Data taking of XYZ in 2017

- From Dec.13, 2016 to Jan. 5, 2017 Data taking at the energy of **2.100GeV**
- From Jan. 6, 2017 to Jan. 25, 2017 Data taking at the energy of **2.105GeV**
- From Jan. 26, 2017 to Feb. 13, 2017 Data taking at the energy of **2.110GeV**
- From Feb. 14, 2017 to Mar. 4, 2017 Data taking at the energy of **2.115GeV**
- From Mar. 5, 2017 to Mar. 23, 2017 Data taking at the energy of **2.120GeV**
- From Mar. 24, 2017 to Apr. 11, 2017 Data taking at the energy of 2.125GeV
- From Apr. 12, 2017 to May 1, 2017 Data taking at the energy of **2.140GeV**
- From May 1, 2016 to May 7, 2017 Data taking at the energy of 2.145GeV Integral luminosity (146 days): 3616 pb⁻¹, ~25pb⁻¹/day

For ~3.9fb⁻¹XYZ data in 128 days. (~30 pb⁻¹/day: a challenge to the machine)

LINAC upgrades: Data taking @ 2.3~2.45GeV

- New scheme for the e⁺ source.
- The key device is testing in the tunnel of LINAC. It works well from Nov. 17 till now.
- New e⁺ source device will be installed during summer shutdown of 2019
- The power supply upgrade of Bending magnets has been applied in BEPCII.
- 2.3GeV< Energy < 2.35GeV: Feasible right now
- 2.35GeV< Energy < 2.45GeV: Need to upgrade two ISPB magnets (horizontal bending magnet), the power supply of B magnets and the air-cooling system.
- Energy> 2.45 GeV: No solution based on the existing machine

The BESIII detector

- General purpose detector at BEPCII, $E_{cm} \approx 2-4.6$ GeV, $L_{peak} \approx 10^{33}/cm^2/s$
- Versatile researches in τ-charm physics

Main drift chamber (MDC)

- Main tracking detector for the charged particles: position, momentum and dE/dx measurements
- Inner chamber (8 layers)+ outer chamber (35 layers)
- Operating gas: He/C₃H₈=60/40
- Cell size: 12mm imes 12mm for inner chamber; 16.2 mm imes 16.2mm for outer chamber
- Aging problems of the MDC
 - Cathode aging: Malter discharge (cured in 2012)
 - Anode aging: the gains of the cells decrease with the increase of the cell accumulated charges every year

gain dropped dramatically (42% for the first layer cells)

8

Gain decrease of the cells in each year

- The Q peak changes of the cells in each year are got from Bhabha events, which give the gain decrease
- The gains of the first 10 layers experience an obvious decrease, reaching a maximum decrease of about 42% for the first layer cells.
- The other layer cells of the outer chamber have almost no change

MDC performance - hit efficiency

- The reconstruction hit efficiency of the first four layers drops due to the big background, while for other layers, the efficiency has no change
- The numerator of Rec hit efficiency is the number of hits which are used by reconstruction
- The impacts of gas temperature and pressure are not taken into account

Spatial resolution

The reconstruction hit efficiency and spatial resolution are a little worse than last year

New inner drift chamber

8 layers, 484 cells

- An improved new inner drift chamber with multi-stepped endplates
- Shorten wire length exceeding the effective solid angle
- Reduce the background counting hits (currents) of a cell, decrease the risk of wire broken

Cosmic-ray test

- Spatial resolution : $127 \mu m$
- dE/dx resolution : 6.4%

Cylindrical GEM inner tracker (CGEM)

- Layout: three layers
- Low Material budget: ≤1.5% of X₀
 For all layers
 - Momentum resolution: $\sigma_{Pt}/P_t = ~0.5\%@1$ GeV
 - High Rate capability: ~10⁴ Hz/cm²
- Coverage: 93%
- Spatial resolution: $\sigma_{r\varphi}$: 130 -150µ m, σ_z <1mm
- 1 T magnetic filed
- Operation duration: at least 5 years
- Active area
 - - L1 length 532mm
 - L2 length:690mm
 - - L3 length:847mm
- Inner radius:78mm
- Outer radius:178mm

Why CGEM?

CGEM- inner tracker, new technology In BESIII, first used

- lower material budget: 0.4% X₀
- Analog readout, charge +time

- High particle rates
- Less sensitive to the aging
- Significantly improvement of σ_z
- Less background expected
 - The volume for primary ionization is 6-7 time smaller
- Improvements from Micro-TPC reconstruction [Springer Proc.Phys. 213 (2018) 116-119]

Status of the CGEM

- Cooperative study with Italy, Germany and Sweden groups
- The detector was shipped to IHEP in Nov. 2018
- Assembly of the three layers has been tested
- Cosmic-ray tests for each single layer are on-going

The TOF

- Barrel (2layers)+ 2 end caps
- BC408 and BC404 scintillator
- Hamamatsu R5924 PMT

The performances of BTOF

Year(data)	Resolution	Efficiency\%	Status
2009(jpsi/psip)	67ps	~97	HV of PMTs
2010(psi3770)	70ps	~96	is the same
2011(psi3770)	70ps	~94	
2012(psip/jpsi)	67ps	~97	HV adjusted in 2012
2013(4260/4360)	68ps	~96	and 2016
2014(R scan)	70ps	~94	
2015(R scan)	67ps	~92	No dead channels
2016~2017	72ps	~94	in Barrel TOF
2018(jpsi)	69ps	~93	

- The table show the results of double layers using Bhabha events
 - The time resolution is almost stable
 - The efficiency decrease slightly if PMT HV is not changed

The status of ETOF

- New ETOF was installed into BESIII successfully in summer 2015
 - MRPC detector
 - Two layers at each end cap
 - Two 72 modules
- Work stably during the past three years

Detector performance

Year	Resolution(ps)	Efficiency	
2016	60	~98%	
2017	58	~98%	
2018	54	~98%	
The resolution change is related to energy point, bunch length etc.			

For one module: 4 NINO chips, 12 strips with two end readout

The EMC

- Barrel + 2 end caps
- 5280 + 960, Total 6240 CsI(Tl) crystal modules
- The performance of EMC is stable during the past eleven years.
- The energy resolution of most modules did not change obviously.
- All of the 6240 CsI(Tl) crystal modules worked well. No dead channel was found

E5x5 energy resolution with Bhabha data(J/ ψ)

• The 5x5 energy resolutions with J/ ψ data in 2009, 2012, and 2018 are similar

The Moun Counter

- Barrel (9layers)+ two end cap (8 layers)
- 2000 m² RPC
- 4cm read out strips,
- ~9000 channels
- $\sigma_{r\phi} = 14mm \sim 15mm$, $\sigma_z \sim 17mm$

Electronics system worked well in 2018.

Muon Counter worked stable in 2018.

White Paper on the Future Physics Programme of BESIII

The BESIII collaboration[¶]

and

L. Calibbi^c, J. Charles^a, H. Y. Cheng^d, S. I. Eidelman^{b,g},
S. Descotes-Genon^f, F.-K. Guo^{c,i},
A. A. Petrov^j, J. L. Rosner^h, Z.-Q. Zhang^e

	2 Lig	ht Hadron Physics	1
212	2.1	Introduction	. 1
	2.2	Meson spectroscopy and the search for QCD exotics	. 1
214		2.2.1 Glueballs	. 1
		2.2.2 Hybrids	. 1
216		2.2.3 Multiquarks	. :
	2.3	Barvon spectroscopy	-
218	2.4	BESIII amplitude analysis	-
210	2.5	Other physics opportunities	-
220	2.0	2.5.1 Light meson decays	
220		2.5.2 Resonance production in two photon fusion	
222	2.6	Prospects	
	2.0		• •
	Biblio	graphy	3
224	3 Ch	armonium Physics	3
	9.1		
	3.1	Introduction	
226	3.1	Introduction	4
226	3.1 3.2	Introduction	4
226	3.2	Introduction	4
226 228	3.2	Introduction	. 4
226 228 230	3.1 3.2 3.3	Introduction	

2

	4	R values, QCD and τ Physics	65
238	4	.1 Introduction	65
		.2 BESIII measurements related to muon magnetic moment	66
260		4.2.1 The anomalous magnetic moment of the muon, $(g-2)_{\mu}$	66
		4.2.2 Measurement of exclusive hadronic channels via ISR	69
242		4.2.3 Measurements of meson transition form factors	73
	4	1.3 Measurement of the inclusive R value via energy scan	77
264		4.3.1 The running of the electromagnetic fine structure constant, $\alpha_{em}(s)$.	77
		4.3.2 Inclusive R scan data	78
246	- 4	A Baryon form factors	79
	- 4	1.5 Fragmentation function	85
248	- 4	1.6 Measurement of the τ mass	86
	4	.7 Relative phase in vector charmonium production	87
250	4	1.8 Study of $\phi(2170)$ with the energy scan method	88
	4	.9 Prospects	92
252	Bib	liography	95
	5 (Charm physics 1	03
254	1.1	i.1 Introduction	.03
	- 8	5.2 $D^{0(+)}$ and D_s^+ physics	.05
256		5.2.1 Leptonic decays	.05
		5.2.2 SL decays	10
258		5.2.3 Quantum-correlated measurements of D ⁰ hadronic decays 1	14
		5.2.4 Impact on CKM measurements	19
260		5.2.5 Absolute measurement of hadronic decays	20
	1.1	i.3 Charmed baryons	24
262		5.3.1 Λ_c^+ physics	24
		5.3.2 Prospects in Λ_c^+ physics	25
264		5.3.3 Σ_c and Ξ_c physics	27
		5.3.4 The EM structure of charmed baryons	28
266	1	i.4 Summary	29
	Bib	liography 1	31
268	6 1	Exotic Decays and New Physics 1	37
		i.1 Introduction	37
		A 19 1 2 1 1 1 1 1 1 1	

- BESIII White Paper is ready and will be released soon.
- With much larger data samples and stable running of BEPCII and BESIII, there is still very rich program ahead.

Summary

- From now to summer shutdown, ~3.9fb⁻¹ XYZ data will be taken
- The upgrade to take data at the energy 2.3~2.45GeV is undergoing. It will be feasible after the summer shutdown of 2019.
- For MDC, after 9 years running, the gains of the first 10 layers decrease obviously with a maximum of 42% for the first layer, while the other layer cells of the outer chamber have almost no change
- CGEM-inner tracker: new technology used at BESIII. The detector was shipped to IHEP in Nov. 2018. Assembly of the three layers. Preparation for cosmic-ray test.
- For BTOF, the time resolution is almost stable
- For ETOF, new ETOF work stably for three years since 2016
- For EMC, during the past 11 years, the energy resolution is changed very little.
- Muon Counter and Electronics system worked well in 2018. The performance did not change.

More talks from BESIII:

- Charmonium Studies at BESIII -- Lianjin Wu
- Baryon form factors at BESIII Kai Zhu
- XYZ states at BESIII -- Zhentian Sun
- Light hadrons spectroscopy -- Tianjue Min
- R measurement -- Haiming Hu
- New physics BSM Minggang Zhao
- Two-photons physics -- Christoph Florian Redmer
- Charm physics at BESIII -- Peter Weidenkaff
- tau mass measurement -- Ivan Nikolaev