New results and perspectives in neutrino physics

Yury Kudenko Institute for Nuclear Research, Moscow

PHIPSI, BINP, Novosibirsk, Russia, 25 February 2019

OUTLINE

Neutrino oscillations

- 3-neutrino scheme
- running accelerator experiments
- future projects

Light sterile neutrinos

- neutrino anomalies
- new experimental tests

Neutrino mass

- direct measurements
- $0\nu 2\beta$ decay
- cosmology

v oscillations and mixing

Standard Model: neutrinos are *massless* particles

Main goals

- CP violation	o <mark>n in lepton sector</mark> on in neutrino oscillations	neutrinos quarks $V_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$ $V_{CKM} \sim \begin{pmatrix} 1 & 0.2 & 0.01 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix}$
$J_{CP} = Im(U_{e1}U_{\mu 2}U_{e2}^{*}U_{\mu 1}^{*})$ $= cos\theta_{12}sin\theta_{12}cos^{2}\theta_{12}$ all mixing angles	$) = Im(U_{e2}U_{\mu3}U_{e3}^{*}U_{\mu2}^{*})$ $\partial_{13}sin\theta_{13}cos\theta_{23}sin\theta_{23}sin\delta_{0}$ $\neq 0 \rightarrow$	Quark sector $J_{CP} \approx 3 \times 10^{-5}$ Lepton sector $J_{CP} \sim 0.02 \times \sin \delta_{CP}$
→ J _{CP} ≠ 0 if δ _{CP} - Neutrino n	<pre>First indica First indica nass hierarchy </pre>	Action from T2K: $\delta_{CP} = -\pi/2$ Normal hierarchy v_3 (NH) v_2 v_1 Δm_{21}^2 v_3 (H) v_2 Δm_{21}^2 v_3 Δm_{21}^2 v_3 Δm_{21}^2 v_3 Δm_{21}^2 Δm_{13}^2 v_3 Δm_{21}^2 Δm_{21}^2
- θ ₂₃ – maximal? If no	ot, what octant (θ ₂₃ > π/4 c	or θ ₂₃ < π/4)? Neutrino cross sections
- Sterile neutrinos	- Absolute mass scale	- Dirac or Majorana
25 February 2019	Yury Kudenko INR	RAS, Moscow 4

Experimental methods

Current LBL experiments

about 500 members 59 institutions from 11 countries

Tokyo

LONG-BASELINE NEUTRINO OSCILLATION EXPERIMENT

JAPAN

Super-K

Toyama

Kamioka Mine

JPARC

Tokai

Tokyo/Narita Airport

T2K data

Neutrino mode Antineutrino mode

1.49×10²¹ POT 1.12×10²¹ POT

P.Litchfield, ICHEP2018

 $\nu_{\mu} \rightarrow \nu_{e} + 1\pi$

25 February 2019

T2K data and expectation

Event rate				s	systematic erro	or
Beam mode	Not Oscillated	Oscillated (maximal mixing)	Observed	Beam mode	w/o ND280	ND280 constrained
neutrino	1211.4	268.2	243	neutrino	14.5%	→ 4.9%
antineutrino	314.3	95.3	102	antineutrino	12.2%	→ 4.3%

Comula	Expect	ation, sin ²	$\theta_{23}^2 = 0.5$	28, δ =	Observed	
Sample	-π/2	0	π	$+\pi/2$	Observed	
FHC 1R-µ	268.5	268.2	268.9	268.9	243	
RHC 1R-µ	95.5	95.3	95.8	95.5	102	disappearance
Sum of 1R-µ	364.0	363.5	364.7	364.5	345	
FHC 1R-e	73.8	61.6	62.2	50.0	75	
FHC $1R-e + d.e.$	6.9	6.0	5.8	4.9	15	appearance
RHC 1R-e	11.8	13.4	13.2	14.9	9	

CP: T2K result

T2K v_e / anti- v_e

T2K v_e / anti- v_e + reactor θ_{13}

CP: T2K result

CP-conservation hypothesis (sin $\delta_{CP} = 0, \pi$) excluded at 2σ level

- First hint for CP violation in the lepton sector
- T2K data favour $\delta_{CP} \sim -\pi/2$ and normal hierarchy

J.Bian ICHEP2018

Neutrino beam: 8.85×10^{20} POTAntineutrino beam: 6.9×10^{20} POT

Far detector

Neutrino beam:

- Observe 113 events
- Expect 730 +38/-49(syst.) w/o oscillations

Antineutrino beam:

- Observe 65 events
- Expect 266 +12/-14(syst.) w/o oscillations

NOvA: v_e /anti- v_e

NOvA results

0.4

2.0

 $sin^2\theta_{23}$

0.6

0.5

Future LBL Projects

- Reactor experiment JUNO

- Accelerator LBL experiment DUNE
- Hyper-Kamiokande and T2HK

Reactor experiment JUNO China

77 institutions ~ 600 collaborators

- 700 m deep underground
- 36 GW reactor power
- 53 km baseline -> oscillation

maximum θ_{12}

- 20 kton LS detector
- **3%** energy resolution at 1MeV
- <1% energy scale uncertainty

JUNO goals

Yaping Cheng, NuPhys2018

Main goal: determination of neutrino mass hierarchy

Running time 6 years

-	×10 ⁶						
₩ 0.14	-	<u>ν</u>	spectru	m at JU	NO, L :	= 52.5 k	m
11/11		$\langle \rangle$			-1	lo osc.	-
suts 0.12	F /	2			1	-P21 OSC.	-
Å 0.10	E /		/			for NO	-
0.08	- /	$\sin^2 2\theta_{12}$					-
0.06	E /				- F	ee for IO	-
0.00	E /			1	ŧ		-
0.04		0000	ACC:	t. T		nin200	-
0.02	mon		Am 3	2	~	511-20	-
0.00	E		ee				
	2 3	Δm_{21}^{2}	5	6	7	8 E _v [M	9 leV]

PRD 88, 013008 (2013)	Hierarchy discrimination power	With info on Δm ² _{µµ} from LBL expts		
Statistics only	4σ	5σ		
Realistic case	3σ	4σ		
Oscillation Parameter	Current accuracy (global 1σ)**	Dominant experiment(s)	JUNO Potentialit	

2.3%

1.6%

~4-6%

Supernova neutrino Geoneutrinos Solar neutrinos

25 February 2019

 Δm_{21}^2

 $\Delta m^2 = |m_3^2 - \frac{1}{2} (m_1^2 + m_2^2)|$

 $\sin^2(\theta_{12})$

Yury Kudenko INR RAS, Moscow

0.59%

0.44%

0.67%

KamLAND

MINOS, T2K

SNO

LBNF/DUNE Project

Flagship FNAL project

Main goals: - discovery of CP violation in leptonic sector

- neutrino mass hierarchy at $>5\sigma$ level
- neutrino astronomy
- proton decay search

Far detector 40 kt (4 x10kt fiducial) LAr TPC

3856.0/3/3/2Y

32 countries >1100 collaborators

Mass Ordering

7 years (staged)

10 years (staged)

····· sin²0.. = 0.441 + 0.042

 $E_{p} = 60-120 \text{ GeV}$ Beam power 1.2 -> 2.4 MW On axis neutrino beam $Ev \sim 1-6 \text{ GeV}$ L=1300 km from FNAL to SURF, S.Dakota

Sensitivity to CP and MH

2021 – installation of 1st far detector 2024 – 2 modules operational 2026 – deliver neutrino beam

25 February 2019

Single and

Dual

phase

detectors

Yury Kudenko INR RAS, Moscow

HyperKamiokande

Japan

HyperK

 Upgrade of JPARC to 1.3 MW beam power
 New/upgrade of near neutrino detectors

J-PARC

Tank

60 m(H)x74m(D) Total volume 260 kt Fiducial volume 190 kt ~10xSuperK PMT coverage 40% 40000 PMTs 2.5°off-axis peak energy 600 MeV

Main goals:

- Search for CP violation
- Proton decay
- Neutrino astrophysics

10 years of running:

- 8σ for $\delta_{CP} = -\pi/2$ - 80% coverage of δ_{CP} parameter space with >3c

 $p \to \pi^0 e^+ > 10^{35} y$

25 February 2019

Expected sensitivity to CP

Significance for $\delta_{CP} = -\pi/2$

Light sterile neutrinos

Neutrino anomalies

LSND/MiniBooNe anomaly

Gallium and Reactor anomalies

These anomalies can be interpreted as oscillations involving sterile neutrino with $\Delta m^2 \sim 1 \text{ eV}^2$

25 February 2019

Sterile neutrino?

Sterile v's: Daya Bay + MINOS+ Bugey-3

PRL117 (2016) 151801

 10^{2} Daya Bay data 90% C.L. Allowed • Constrains Δm_{41}^2 (mainly 10⁻⁴ to – MiniBooNE 10^{-1} eV^2) and $\sin^2 2\theta_{14}$ 10 – MiniBooNE (⊽ mode) Bugey-3 data • constrains Δm_{41}^2 (mainly 10⁻¹ to 10 eV²) and $\sin^2 2\theta_{14}$ ∆m²₄₁ (eV²) ___01 MINOS data • Constrains Δm_{41}^2 (mainly 10⁻³ to $10^2 \,\mathrm{eV^2}$) and $\sin^2 \theta_{24}$ **10**⁻² Combined all three 90% C.L. (CL_s) Excluded **10**⁻³ • Constrains Δm_{41}^2 and – NOMAD KARMEN2 $\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \cdot \sin^2 \theta_{24}$ MINOS and Daya Bay/Bugey-3 10⁻⁴ 10⁻³ 10^{-6} 10⁻⁵ 10⁻⁴ 10⁻² **10**⁻¹ $\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$

Sterile v's: IceCube

PRL 117 (2016) 071801

Ev = 320 GeV - 20 TeV

sterile neutrinos produce distortions of $\nu\mu$ + anti- $\nu\mu$ flux (energy and angle) in the range $0.01 \le \Delta m^2 \le 10 \text{ eV}^2$

1 year of data statistics limited

Result compatible with no-sterile hypothesis

25 February 2019

SBL reactor experiments (I)

DANSS, (I.Alexeev et al. PL B787 (2018) 56) Kalinin power station 3.1 GW Segnebted detector 1 m3

NEOS (PRL 118 (2017) 121802) Korea, Reactor 2.8 GW Active zone Ø3.1 м h=3.8 м Detector 1t LS + Gd

Reactor anomaly excluded at 5σ

No evidence for ν_s with mass ~ 1 eV

25 February 2019

SBL reactor experiments (II)

25 February 2019

FNAL: Short Baseline Neutrino program

arXiv:1503.01520

Detector	Distance from BNB Target	LAr Total Mass	LAr Active Mass
LAr1-ND	110 m	220 t	112 t
MicroBooNE	470 m	170 t	89 t
ICARUS-T600	600 m	760 t	476 t

25 February 2019

Absolute scale of neutrino mass

Neutrino mass

Three methods to determine neutrino mass

Kinematics of β- decay
 model independent

$$m(v_e) = \sqrt{\sum_{i=1}^3 |U_{ei}|^2 m_i^2}$$

2. $0v2\beta$ - decay

- model dependent (heavy neutrinos, nuclear matrix elements...)
- neutrino Majorana particles

$$< m_{\beta\beta} > = \sum_{i=1}^{3} U_{ei}^{2} m_{i} = |U_{e1}^{2} m_{1} + U_{e2}^{2} e^{i\alpha_{2}} m_{2} + U_{e3}^{2} e^{i\alpha_{3}} m_{3}$$

Cosmology ∧CDM
 model dependent (cosmology model)

$$m_{tot} = \sum_{i=1}^{3} m_i$$

25 February 2019

Direct measurement of v mass

KATRIN, Karlsrue, Germany

Present limit m(v_e) < 2 3B -Troitsk nu-mass - Mainz

Energy resolution <1 \Rightarrow B Sensitivity to m(v_e) ~ 0.2 \Rightarrow B

First run - June 2018 Energy interval 400 9B Data taking 2019-2023

Neutrinoless double β-decay

0ν2β

- $0\nu 2\beta$ forbidden in SM
- violation of lepton number
- neutrino Majorana particles

 $M^{0\nu}$ - nuclear matrix element $G^{0\nu}$ - phase space

$$\langle m_{\beta\beta} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$$

25 February 2019

Limits on $< m_{\beta\beta} >$

		$T_{1/2}^{0v}(90)$			
lsotope, mass	$\mathbf{Q}_{\beta\beta},keV$	b x ΔE x M, counts/yr	T _{1/2} , yr	<m<sub>v>, eV</m<sub>	Experiment, technique
⁷⁶ Ge, 40kg	2039	0.07	> 0.9 x 10 ²⁶	< 0.11-0.25	GERDA, HPGe
⁸² Se, 5kg	2998	0.4	> 2.4 x 10 ²⁴	< 0.38-0.77	CUPID-0, scintillating bolometers
¹⁰⁰ Mo, 7kg	3034	1.5	> 1.1 x 10 ²⁴	< 0.33-0.62	NEMO-3, tracko-calo
¹³⁰ Te, 200kg	2528	21	> 1.5 x 10 ²⁵	< 0.13-0.50	CUORE, bolometers
¹³⁶ Xe, 380kg	2458	1	> 1.07 x 10 ²⁶	< 0.06-0.16	KamLAND- Zen, doped LS

 $< m_{\beta\beta} > < 61-160 \text{ meV} (90 \text{ CL})$

KamLAND –ZEN – 400 90.6% enriched 136 Xe $\sigma_{\rm E}$ ~ 6.6.-7.3% $\sqrt{\rm E}$ (M₃B)

Prospects

Near future

KamLAND-ZEN-800: Xe-136

2 10⁻¹ Kami AND Zen (¹⁵Xe) Zen800 5yr, 90 Zen800 5yr. 90%C.L. 10^{-2} 10^{-1} m_{lightest} (eV)

Far future

LEGEND: Ge-76

LEGEND-200 (first phase):

- up to 200 kg of detectors
- BI ~0.6 cts/(FWHM t yr)
- use existing GERDA infrastructure at LNGS
- design exposure: 1 t yr
- Sensitivity 1027 yr
- Isotope procurement ongoing
- Start in 2021

LEGEND-1000 (second phase):

- 1000 kg of detectors ٠ (deployed in stages)
- BI <0.1 cts/(FWHM t yr) ٠
- Location tbd ٠
- Design exposure 12 t yr
- 1.2 x10²⁸ yr

Inverted mass hierarchy can be tested within 5-10 years

25 February 2019

INR RAS, Moscow Yury Kudenko

Cosmology: neutrino properties

M.Lattanzi, talk at NuPhys18

0.100 KamLAND-ZEN m_{ββ}[eV] (HN) Planck + BAO, ΛCBM+Σm_ν (IH) 0.010 Planck + BAO, ACDM+Σm Planck, ACDM+Σm_ν NH 0.001 10^{-4} 0.050 0.100 0.500 0.001 0.005 0.010 m_{light}[eV]

KamLAND-ZEN → 95% CL upper limit

Oscillation data used, normal hierarchy

 $\Sigma m_{v} < 0.24 \text{ eV}$ Planck18 $\Sigma m_{v} < 0.12 \text{ eV}$ Planck18 + BAO Planck2018 + BAO

N_{eff} = 2.99 ± 0.17 no need in sterile neutrinos for interpretation of cosmological data, but 1 eV vs are allowed if they are not thermalised

Conclusion

Neutrino physics – laboratory to study New Physics beyond SM

- CP violation in neutrino oscillations? Connection to BaU?
- Why different mixing of neutrino and quarks?
- Normal or inverted mass order?
- Neutrino: Dirac or Majorana particles?
- Absolute scale of neutrino mass?
- Generation of neutrino mass, «see-saw» mechanism?
- Sterile neutrinos ?
-

Thank you for your attention!

Backup slides

25 February 2019

Future plans

T2K expected to accumulate 7.8x10²¹ POT around 2021 (now 3x10²¹ POT)

- Upgrade of near detectors to improve systematic uncertainties 18% (2011) → 9% (2014) → 5% (2018) → goal ≤4% (2021)
- Plan to increase the beam intensity up to 1 MW in 2021
- Beam power up to 1.3 MW in ~2026
- T2K-II: proposed extension up to 2026 for $20x10^{21}$ POT 3σ sensitivity to CP violation for $\delta_{CP} \sim -\pi/2$

Prospects for NOvA

Single-phase LAr TPC

1st 10 kt module of DUNE - single-phase TPC
6m x 2.3 m anode and cathode planes 3.6 m spacing
Photon detectors – light guides + SiPMs embedded in APAs

LAr detectors at CERN Neutrino Platform

NP02: WA105 (DP demonstrator + ProtoDUNE DP)

ProtoDUNE DP:

300 tons active mass

6x6x6 m³

S.Murthy, talk at TPC-2016

Demonstrator: $3x1x1 \text{ m}^3 - 5 \text{ tons}$

10mm S
 1m Insul
 2mm Me
 CRP
 Field Cay

Cosmic data taking gas begun

Measurements with test beam in 2018

25 February 2019

Second tank in Korea

arXiv:1611.06118

Source experiments

BEST

3 MCi ⁵¹Cr source

Two-zone 50 t liquid Ga metal target

J.Phys.Conf.Ser. 798 (2017) 012113

SOX (terminated)

Ultra-low radioactive background

- Spatial resolution: 12 cm @ 2 MeV
- Energy resolution: ~3,5% @ 2 MeV

¹⁴⁴Ce-¹⁴⁴Pr v_e source (100-150 kCi)

Source will be produced at Mayak, Russia

Start data taking in 2018

PRD 91 (2015) 072005

25 February 2019

OPERA: final result

 $v_{\mu} \rightarrow v_{\tau}$ appearance

PRL 120 (2018) 211801

10 v_{τ} events observed for 18×10^{19} POT Expected 6.4 events for $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1.0$ Expected background 2.0 ± 0.4 events

Significance of v_{τ} appearance 6.1 σ

OPERA: $\Delta m_{23}^2 = (2.7 + 0.7 - 0.6) \times 10^{-3} \text{ eV}^2$, assuming $\sin^2 2\theta_{23} = 1.0$

IceCube

Neutrinos have the first maximum of disappearance at about 25 GeV Energy threshold of Deep Core = 5 GeV

Data taking for 3 years

PRL 120 (2018) 071801

 $\Delta m_{32}^2 = (2.31 + 011 - 0.13) \times 10^{-3} \text{ eV}^2 \quad \sin^2 \theta_{23} = 0.51 + 0.07 - 0.09 \text{ for NH}$

25 February 2019

Reactor experiments

25 February 2019

Oscillation results

Daya Bay

 $\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$ $|\Delta m_{ee}^2| = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2$ Liang Zhan, ICHEP2018

v_e and anti- v_e disappearance

Global fit of reactor and Gallium data

arXiv:1512.02202

Daya Bay: anti-neutrino flux

PRL 118 (2017) 251801

This discrepancy gives an overestimation of predicted antineutrino flux by 7.8%.

U-235 is a possible source of the Reactor Anomaly?

Short baseline experiments at U-enriched reactors are needed

LSND anomaly

25 February 2019

Gallium anomaly

427 keV v (9.0%) 432 keV v (0.9%) 320 keV γ ⁵¹ V (stable) Detection proc	7 keV v (81.6%) 2 keV v (8.5%) CESS: V _e) ³⁷ Cl (s + ⁷¹ Ga →	⁸¹³ 811 ⁷¹ Ge + e ⁻	keV ν (9.8%) keV ν (90.2%)
	GAL m(Ga	$\frac{1}{1} = 30 t$	S m(C	AGE Ga)=13 t
Source	⁵¹ Cr -1	⁵¹ Cr -2	$\begin{array}{c c} & 1 \\ \hline & 5^{1} Cr \\ \end{array} \begin{array}{c} 3^{7} Ar \\ \hline & 3^{7} Ar \\ \hline \end{array}$	
Intensity (Mci)	1.714	1.868	0.517	0.409
$\mathbf{R} = (p_{exp}/p_{theory})$	$\boldsymbol{0.95\pm0.11}$	0.81 ± 0.11	$1 0.95 \pm 0.12 0.79 \pm 0.12$	
R _{comb}	0.88	0.88 ± 0.08 0.86 ± 0.08		
1.1 GALLEX 1	Cr1 S GALLEX Cr2	SAGE Cr SAGE A	NT .	

SAGE

Reactor anomaly

anti- $v_e \rightarrow anti-v_e$

New MiniBooNe result

25 February 2019