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1.1   Hadronic τ-decays !

•  τ lepton discovered in 1976 by M. Perl !
et al. at SLAC-LBL !
!

–  Mass :!

–  Lifetime :!

•  The only lepton heavy enough   !
to decay into hadrons : !
lots of semileptonic decays !!

Very rich phenomenology !
Test of QCD and EW interactions!

!
•  For the tests:!

–  Precise measurements needed!
–  Hadronic uncertainties under control !

!

•  Very rich phenomenology but!
–  Precise measurements needed!
–  Have the hadronic uncertainties under control !

Tests of QCD and EW interactions!

!
!
!

!

!

1.77682(16) GeVmτ =
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1.2  On the interest of using Dispersion Relations !

•  If E > 1 GeV: ChPT not valid anymore to describe dynamics of the process                !
 Resonances appear :!

–  For ππ:  I=1: ρ(770),  ρ(1450), ρ(1700), …,  I=0: “σ(~500)”, f0(980),…!

–  For Kπ: I=1: K*(892), K*(1410), K*(1680), …,  I=0: “κ(~800)”, …!

!
!

( )Km mπ−

3  decayslK

( )Km mπ+

mτ

  τ → Kπντ  decays

( ) ( )i
i

f s BW sβ+ =∑

 [GeV]s

( )f s+

mµ

Kπ  vector form factor:          
Dominance of K*(892) resonance!

mµ ( )Km mπ−

3  decayslK

( )Km mπ+

 decaysK ττ πν→

0( ) ?f s =

( )0f s

CT

  s  [GeV]

Kπ  scalar form factor:          !
No obvious dominance of a resonance!

   K →π ℓν ℓ  ( )
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•  If E > 1 GeV: ChPT not valid anymore to describe dynamics of the process                !
 Resonances appear :!

–  For ππ:  I=1: ρ(770),  ρ(1450), ρ(1700), …,  I=0: “σ(~500)”, f0(980),…!

–  For Kπ: I=1: K*(892), K*(1410), K*(1680), …,  I=0: “κ(~800)”, …!

•  With Dispersion Relation: !
–  no need for making assumptions !

of a dominance of resonances !
              directly given by the !
              parametrization,!
              phase shifts taken as inputs !
!
–  Parametrization valid in a large range !

of energy: !
         analyse several processes !
         simultanously where the same !
         quantity: FFs, amplitude appear:!
         Ex: Kl3 decays, τ → Kπντ!

!
!
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3  decayslK
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Kπ  scalar form factor:          !
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2.   τ → Kπντ and Vus determination !
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2.1  τ       Kπντ !

•  Master formula for τ       Kπντ :!

!
!
!
!

!
!
!
!
!
!
!
!

Hadronic matrix element: Crossed channel from K → πlνl!

!
     !
!
!
!
!
!

!
     Use a dispersive parametrization to combine with Kl3 analysis!

!

!
!
          !
!
!
!

!
!

!
!
!
!

!
!
!
!

!
!

Γ τ → Kπντ γ⎡⎣ ⎤⎦( ) = GF
2mτ

5

96π 3 CK
2 SEW

τ Vus
2
f+
K 0π −

(0)
2
IK
τ 1+ δEM

Kτ + δ!SU(2)
Kπ⎛

⎝
⎞
⎠

2

( ) ( ) ( ) 0K  s u 0 =  ( )  ( )K K
K K Kp p p p f s p p f s

s s
π π

µ π π πµ µ µ
π γ +

Δ Δ⎡ ⎤− + + − +⎢ ⎥⎣ ⎦

vector! scalar!
2 2( )Ks q p pπ= = +with                              , ! 0,

0,

( )
( )

(0)
f t

f t
f

+
+

+

=

( )0 , ( ), ( )KI ds F s f s f sτ
+= ∫
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•  Parametrization to analyse both Kl3 and !
τ       Kπντ          Use dispersion relations!
!
!
!
!
!

•  Omnès representation: !

!
!
!

-!
!
!

-                           unknown!

!
!

!
!

•  Subtract dispersion relation to weaken the high energy contribution of the 
phase. Improve the convergence but sum rules to be satisfied!!

!

2.2  Dispersive representation for the form factors !

  
f+ ,0 (s) = exp

s
π

ds'
s'

φ+ ,0 (s')
s'− s − iεsth

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

,0:  ( ) ( )in Ks s s sπφ δ+< =

Kπ scattering phase!

,0:  ( )ins s sφ+≥

,0 ,0( ) ( )ass sφ φ π π+ += = ± ( ),0( ) 1 /f s s+ →

Brodsky & Lepage !

( )2th Ks m mπ≡ +

ϕ+,0(s) : phase of the form factor!
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disc f 0,+ (s)⎡⎣ ⎤⎦ ∝ tℓ

I∗(s) f 0,+ (s)
Unitarity:!



!
!
!

•          : dispersion relation with 3 subtractions: 2 in s=0 and 1 in s = (mK+mπ)2

                                         Callan-Treiman!

!
!
!
!
!

•          : dispersion relation with 3 subtractions in s=0 !
!

!
!
!
!
!
!

!
!
!

!

Determination of the Kπ FFs: Dispersive 
representation !
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Bernard, Boito, E.P.’11 !

( )f s+

( ) ( )( )2

2 3

2 2
' '' '2

3
1( ) exp +  ( ''

'2 '
)

Km m

s s sf s ds
s s s im m

s
ππ π π

φλ λ λ
ε

+
+ + +

∞

+ + −

⎡ ⎤⎛ ⎞
⎢ ⎥= − +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦−∫

Extracted from a model including !
2 resonances K*(892) and K*(1414) !

Boito, Escribano, Jamin’09,’10!

Jamin, Pich, Portolés’08 !
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!
!
!

•  Model for ϕ+(s): !

!
!
!
!

        !
!
!
!
!

!
!
!

!

Determination of the Kπ FFs: Dispersive 
representation !
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Diogo Boito

i ii iii
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n � s� �n ReH̃(s)� imn�n(s)

f̃+(s) =

�
m2
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iii. fits to tau data + constraints from Kl3
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iii. fits to tau data + constraints from Kl3

   D mn ,Γ n( ) = mn
2 − s −κ n Re !H∑ − imnΓ n(s)with!

   
tanδ Kπ

P ,1/2 =
Im !f+ (s)
Re !f+ (s)

Boito, Escribano, Jamin’09,’10!



Fit to the τ     Kπντ  
decay data + Kl3 constraints !

    Bernard, Boito, E.P.’11 !
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Fit to the τ     Kπντ  
decay data + Kl3 constraints !

•  Results:!
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Kπ phase shift!
!

!
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NB:	BRs	measured	by	B	factories	are	systema4cally	�
smaller	than	previous	measurements	

Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

1.2   Ex: �π scattering: P-wave 
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Tau data 

τ � Kπντ  

   Boito, Escribano & Jamin’10 

See also  
lattice QCD 
Dudek et al. 
Wilson et al.’14 



•  Decay rate master formula !
!
!
!

!
!

 !
!

!
!
!
!
!

2.3  Extraction of Vus !

  
f+ 0( )Vus = 0.2141 ± 0.0014IK

± 0.0021exp   Vus = 0.2212 ± 0.0027

  f+ 0( ) = 0.9677 27( )
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BR τ → K 0π −ντ( ) = 0.416 ± 0.008( )%

Belle’14 !

Γ τ → Kπντ γ⎡⎣ ⎤⎦( ) = GF
2mτ

5

96π 3 CK
2 SEW

τ Vus
2
f+
K 0π −

(0)
2
IK
τ 1+ δEM

Kτ + δ!SU(2)
Kπ⎛

⎝
⎞
⎠

2

ew 1.0201S =

Marciano & Sirlin’88, !
Braaten & Li’90, Erler’04 !

( )0

EM 0.15 0.2 %K τδ = − ±

  IK 0
τ = 0.50432 ± 0.01721

Antonelli, Cirigliano, Lusiani, E.P.’13 !

FLAG’19 !
Nf = 2+1 !



•  Decay rate master formula !
!
!
!

!
!

 !
!

•  Result of fit to Kl3 + τ       Kπντ and Kπ scattering data including!
     inelasticities in the dispersive FFs !

!
!
!
!
!

2.3  Extraction of Vus !

  
f+ 0( )Vus = 0.2141 ± 0.0014IK

± 0.0021exp   Vus = 0.2212 ± 0.0027

  f+ 0( ) = 0.9677 27( )
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Γ τ → Kπντ γ⎡⎣ ⎤⎦( ) = GF
2mτ

5

96π 3 CK
2 SEW

τ Vus
2
f+
K 0π −

(0)
2
IK
τ 1+ δEM

Kτ + δ!SU(2)
Kπ⎛

⎝
⎞
⎠

2

Antonelli, Cirigliano, Lusiani, E.P.’13 !

  f+ 0( )Vus = 0.2163 ± 0.0014 Bernard’14!

FLAG’19 !
Nf = 2+1 !



0.21

0.21

0.22

0.22

0.23

0.23

0.24

0.24

0.25

0.25

Vus

τ -> Kν absolute (+ fK)

τ -> Kπντ decays (+ f+(0), FLAG)

τ  branching fraction ratio

Kl3 analyses

Kl2 /πl2 decays (+ fK/fπ)

τ -> s inclusive 

Our result from Belle BR

τ decays

Kaon and hyperon decays

Kl3 decays (+ f+(0))

Hyperon decays

τ -> Kν / τ -> πν (+ fK/fπ)

From Unitarity!
Flavianet !

Kaon WG’10 !
  update by M.Moulson !

CKM’18 !

BaBar & Belle !
HFAG!

 update by A.Lusiani!
Tau’18!
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•  Modes measured in the strange channel for              :  !
!
!
!
!
!
!

!

!
!

!
!
!
!
!

!

sτ →
HFAG’12 !

~70% of the decay !
modes crossed !
channels!
from Kaons!  !

2.4  Vus using info on Kaon decays and τ à Kπντ!



2.4   Vus using info on Kaon decays and τ      Kπντ!Use information from K decays 
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Antonelli, Cirigliano, Lusiani, E.P. ‘13 !

•  Longstanding inconsistencies !
between τ  and kaon decays !
in extraction of Vus seem to have !
been resolved !!

	    R. Hudspith, R. Lewis, K. Maltman,!
     J. Zanotti’17 !
	
•  Crucial input: !

τ	→	Kπντ	Br + spectrum !
!
!
!

               need new data !
	

  Vus = 0.2229 ± 0.0022exp ± 0.0004theo
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  Vus = 0.2229 ± 0.0022exp ± 0.0004theo

|us|V
0.22 0.225

, PDG 2016l3K
 0.0010±0.2237 

, PDG 2016l2K
 0.0007±0.2254 

CKM unitarity, PDG 2016
 0.0009±0.2258 

 s incl., Maltman 2017→ τ
 0.0004± 0.0022 ±0.2229 

 s incl., HFLAV 2016→ τ
 0.0021±0.2186 

, HFLAV 2016νπ → τ / ν K→ τ
 0.0018±0.2236 

 average, HFLAV 2016τ
 0.0015±0.2216 

HFLAV
Spring 2017

Figure 1: |V
us

| averages. The “Maltman 2017” |V
us

| determination [87] reports the experimental uncertainty followed
by the theoretical uncertainty.

5.3 |V
us

| from ⌧ summary

We summarize the |V
us

| results reporting the values, the discrepancy with respect to the |V
us

| determination from
CKM unitarity, and an illustration of the measurement method:

|V
us

|
uni

= 0.22582 ± 0.00089 [from
p

1 � |V
ud

|2 (CKM unitarity)] ,

|V
us

|⌧s

= 0.2186 ± 0.0021 � 3.1� [from �(⌧� ! X�
s

⌫⌧ )] ,

|V
us

|⌧K/⇡ = 0.2236 ± 0.0018 � 1.1� [from �(⌧� ! K�⌫⌧ )/�(⌧� ! ⇡�⌫⌧ )] .

Averaging the two above |V
us

| determinations that rely on the ⌧ branching fractions (taking into account all corre-
lations due to the ⌧ HFLAV and other mentioned inputs) we obtain, for |V

us

| and its discrepancy:

|V
us

|⌧ = 0.2216 ± 0.0015 � 2.4� [average of 2 |V
us

| ⌧ measurements] .

All |V
us

| determinations based on measured ⌧ branching fractions are lower than both the kaon and the CKM-unitarity
determinations. This is correlated with the fact that the direct measurements of the three major ⌧ branching fractions
to kaons [B(⌧ ! K�⌫⌧ ), B(⌧ ! K�⇡0⌫⌧ ) and B(⌧ ! ⇡�K

0

⌫⌧ )] are lower than their determinations from the
kaon branching fractions into final states with leptons within the SM [69, 88, 89]. In addition, according to recent
studies [90, 87], the theory uncertainty of the |V

us

| determination from inclusive ⌧ ! X
s

⌫ may be underestimated.
The same recent studies also report an alternative |V

us

| determination that relies on the ⌧ spectral functions in
addition to the inclusive ⌧ ! X

s

⌫ branching fraction. The resulting value of |V
us

| is consistent with the other
|V

us

| determinations (more precisely, it is about 1� lower); however the better agreement mostly depends on the
fact that the HFLAV average of B(⌧ ! K�⌫⌧ ) has been replaced with the SM prediction based on the measured
B(K� ! µ�⌫µ) and the HFLAV average of B(⌧ ! K�⇡0⌫⌧ ) has been replaced with a yet unpublished BABAR
result contained in a PhD thesis.

In previous editions of the HFLAV report, we also computed |V
us

| using the branching fraction B(⌧ ! K⌫) and
without taking the ratio with B(⌧ ! ⇡⌫). We do not report this additional determination because it did not include
the long-distance radiative corrections in addition to the short-distance contribution, and because it had a negligible
effect on the overall precision of the |V

us

| calculation with ⌧ data.

Figure 1 summarizes the |V
us

| results, reporting also recent determinations of |V
us

| from kaon decays [91], CKM
matrix unitarity [91] and the above mentioned determination of |V

us

| from inclusive ⌧ ! X
s

⌫ decays and ⌧ spectral
functions [87].
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3.  Lepton Flavour Violation: τ → ππµ !
!

Celis,	Cirigliano,	E.P.’14	



3.1  Introduction and Motivation !

•  Lepton Flavour Violation is an « accidental » symmetry of the SM 
(mν=0)!
!

•  In the SM with massive neutrinos effective CLFV vertices are tiny !
due to GIM suppression        unobservably small rates!!
!

e.g.:		

•  Extremely clean probe of beyond SM physics!
	
!Emilie Passemar!

 µ → eγ

  
Br µ → eγ( ) = 3α

32π
U µi

*

i=2,3
∑ Uei

Δm1i
2

MW
2

2

< 10−54

 eµ

  Br τ → µγ( ) < 10−40⎡⎣ ⎤⎦

Petcov’77, Marciano & Sanda’77, Lee & Shrock’77…!



2.1  Introduction and Motivation !

•  In New Physics scenarios CLFV can reach observable levels in several 
channels!

!
!
!
!
!
!
!

•  But the sensitivity of particular modes to CLFV couplings is model dependent!
•  Comparison in muonic and tauonic channels of branching ratios, conversion 

rates and spectra is model-diagnostic!

!
Emilie Passemar!

Lepton Flavor Violation in example BSM models 
� Neutrino-less tτ decays:  optimal hunting ground for non-Standard Model LFV effects

� Topologies are similar to those of tτ hadronic decays

� Current limits (down to ~ 10-8), or limits anticipated at next generation e+e- colliders, directly
confront many New Physics models

David Hitlin    1st Conference on CFLV - Lecce

3

May 8, 2013

Talk by D. Hitlin @ CLFV2013 !



3.2  CLFV processes: tau decays !

•  Several processes:!
�
!

!
!

!
!
!

•  48 LFV modes studied at Belle and BaBar!

•  !
!

Emilie Passemar!

   τ → ℓγ ,  τ → ℓα ℓβℓ β ,  τ → ℓY
  P ,  S,  V ,  PP , ...



3.2  CLFV processes: tau decays !
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   τ → ℓγ ,  τ → ℓα ℓβℓ β ,  τ → ℓY
  P ,  S,  V ,  PP , ...

 d
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•  Several processes:!
�
!

!
!

!
!
!

•  Expected sensitivity 10-9 or better at LHCb, Belle II, HL-LHC? !

•  !
!



!
!
!
!
!
•  Build all D>5 LFV operators:!

		
Ø  Dipole:!
!

Ø  Lepton-quark (Scalar, Pseudo-scalar, Vector, !
Axial-vector):!
	

Ø  Lepton-gluon (Scalar, Pseudo-scalar):!
!

Ø  4 leptons (Scalar, Pseudo-scalar, Vector, !
Axial-vector):!
	

•   Each UV model generates a specific pattern of them !
!
!
!

•  !
!

3.3  Effective Field Theory approach !

Emilie Passemar!

   
L = LSM + C (5)

Λ
O (5) +

Ci
(6)

Λ 2 Oi
(6)

i
∑ + ...

See e.g. !
Black, Han, He, Sher’02 !
Brignole & Rossi’04 !
Dassinger, Feldmann, Mannel,!
Turczyk’07 !
Matsuzaki & Sanda’08 !
Giffels et al.’08!
Crivellin, Najjari, Rosiek’13 !
Petrov & Zhuridov’14 !
Cirigliano, Celis, E.P.’14 !
!
!

   
Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν

   
Leff

S ⊃ −
CS ,V

Λ 2 mτ mqGFµ  ΓPL,Rτ  qΓq

   
Leff

G ⊃ −
CG

Λ 2 mτGFµPL,Rτ  Gµν
a Ga

µν

    
Leff

 4ℓ ⊃ −
CS ,V

4ℓ

Λ 2 µ  ΓPL,Rτ  µ  ΓPL,Rµ

 Γ ≡ 1 ,γ µ



3.4  Model discriminating power of Tau processes !
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•  Summary table:!

!
!
!
!

•  The notion of “best probe” (process with largest decay rate) is model 
dependent !

!
!

•  If observed, compare rate of processes         key handle on relative strength 
between operators and hence on the underlying mechanism!

 !

Discriminating power: τLFV matrixCelis, Cirigliano, E.P.’14 !
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!
!

•  In addition to leptonic and radiative decays, hadronic decays are very 
important          sensitive to large number of operators!!

•  But need reliable determinations of the hadronic part: !
form factors and decay constants (e.g. fη, fη’)!

 !

Discriminating power: τLFV matrixCelis, Cirigliano, E.P.’14 !
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!
!

•  In addition to leptonic and radiative decays, hadronic decays are very 
important          sensitive to large number of operators!!

•  But need reliable determinations of the hadronic part: !
form factors and decay constants (e.g. fη, fη’)!

 !

Discriminating power: τLFV matrixCelis, Cirigliano, E.P.’14 !



Ex: Non standard LFV Higgs coupling!

!

•  !
 !
!

!

•  High	energy	:	LHC	
!

!
!
!
•  Low	energy	:	D,	S	operators�

!
!

!

!

In	the	SM:			 v
SMh i

ij ij
m

Y δ=

Yτµ

Hadronic	part	treated	with	perturba4ve	
QCD	

   
ΔLY = −

λij

Λ 2 fL
i fR

j H( )H †H  −Yij fL
i fR

j( )h

Goudelis,	Lebedev,	Park’11	
Davidson,	Grenier’10	
Harnik,	Kopp,	Zupan’12�
Blankenburg,	Ellis,	Isidori’12	
McKeen,	Pospelov,	Ritz’12	
Arhrib,	Cheng,	Kong’12	
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Ex: Non standard LFV Higgs coupling!

!

•  !
 !
!

!

•  High	energy	:	LHC	
!

!
!
!
•  Low	energy	:	D,	S,	G	operators�

!
!

!

!

In	the	SM:			 v
SMh i

ij ij
m

Y δ=

Yτµ

Hadronic	part	treated	with	perturba4ve	
QCD	

   
ΔLY = −

λij

Λ 2 fL
i fR

j H( )H †H  −Yij fL
i fR

j( )h

Goudelis,	Lebedev,	Park’11	
Davidson,	Grenier’10	
Harnik,	Kopp,	Zupan’12�
Blankenburg,	Ellis,	Isidori’12	
McKeen,	Pospelov,	Ritz’12	
Arhrib,	Cheng,	Kong’12	
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Reverse	the	process !
!
!
!

Yτµ

Hadronic	part	treated	with	�
non-perturba4ve	QCD	

+!



3.5  Constraints from τ → µππ

•  Tree level Higgs exchange !

!
!
!

•  Problem : Have the hadronic part under control, ChPT not valid at these 
energies!!
!

Use form factors determined with dispersion relations matched at low 
energy to CHPT!

!

!
•  Dispersion relations: based on unitarity, analyticity and crossing symmetry!

         Take all rescattering effects into account!
ππ  final state interactions important!

 !

+

Emilie Passemar!

hh

Daub, Dreiner, Hanhart, Kubis, Meissner’13 !
Celis,	Cirigliano,	E.P.’14	



•  Tree level Higgs exchange 
 
 

 
 
 
 

 
    
 
 
 

 
 

+

( )hqf ywith the form factors:  
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3.5  Constraints from τ → µππ

•  Tree level Higgs exchange !

!
!
 !

+
hh

Yτµ

couplings to the light quarks, ¯̀(1 ± �5)⌧ · q̄{1, �5}q. Finally, the diagram to the right, through

heavy-quarks in the loop generates gluonic operators of the type ¯̀(1±�5)⌧ ·GG and ¯̀(1±�5)⌧ ·GG̃.

When considering hadronic LFV decays such as ⌧ ! `⇡⇡ or ⌧ ! `P (P = ⇡, ⌘, ⌘0) one

needs the matrix elements of the quark-gluon operators in the hadronic states. In particular,

P-even operators will mediate the ⌧ ! `⇡⇡ decay and one needs to know the relevant two-

pion form factors. The dipole operator requires the vector form factor related to h⇡⇡|q̄�µq|0i
(photon converting in two pions). The scalar operator requires the scalar form factors related

to h⇡⇡|q̄q|0i. The gluon operator requires h⇡⇡|GG|0i, which we will reduce to a combination of

the scalar form factors and the two-pion matrix element of the trace of the energy-momentum

tensor h⇡⇡|✓µµ|0i via the trace anomaly relation:

✓µµ = �9
↵s

8⇡
Ga

µ⌫G
µ⌫
a +

X

q=u,d,s

mq q̄q . (2)

To impose robust bounds on LFV Higgs couplings from ⌧ ! `⇡⇡, we need to know the hadronic

matrix elements with a good accuracy. With this motivation in mind, we now discuss in detail

the derivation of the two-pion matrix elements.

3 Hadronic form factors for ⌧ ! `⇡⇡ decays

The dipole contribution to the ⌧ ! `⇡⇡ decay requires the matrix element

⌦

⇡+(p⇡+)⇡�(p⇡�)
�

�

1
2(ū�

↵u� d̄�↵d)
�

�0
↵ ⌘ FV (s)(p⇡+ � p⇡�)↵, (3)

with FV (s) the pion vector form factor. As for the scalar currents and the trace of the energy-

momentum tensor ✓µµ, the hadronic matrix elements are given by

⌦

⇡+(p⇡+)⇡�(p⇡�)
�

�muūu+mdd̄d
�

�0
↵ ⌘ �⇡(s) ,

⌦

⇡+(p⇡+)⇡�(p⇡�)
�

�mss̄s
�

�0
↵ ⌘ �⇡(s) ,

⌦

⇡+(p⇡+)⇡�(p⇡�)
�

�✓µµ
�

�0
↵ ⌘ ✓⇡(s) , (4)

with �⇡(s) and �⇡(s) the pion scalar form factors and ✓⇡(s) the form factor related to ✓µµ. Here

s is the invariant mass squared of the pion pair: s = (p⇡+ + p⇡�)2 = (p⌧ � p`)
2.

In what follows, we determine the form factors by matching a dispersive parameterization

(that uses experimental data) with both the low-energy form dictated by chiral symmetry and

the asymptotic behavior dictated by perturbative QCD. Numerical tables with our results are

available upon request.

3.1 Determination of the ⇡⇡ vector form factor

The vector form factor FV (s) has been measured both directly from e+e� ! ⇡+⇡� [31–35]

and via an isospin rotation from ⌧ ! ⇡�⇡0⌫⌧ [36, 37]. It has also been determined by several

theoretical studies [38–54].

6

  
s = p

π + + p
π −( )2



•  Elastic approximation breaks down for the ππ S-wave at         threshold !
due to the strong inelastic coupling involved in the region of f0(980)!

!
!

 Need to solve a Coupled Channel Mushkhelishvili-Omnès problem!

!
!
    !
!

•  Unitarity           the discontinuity of the form factor is known !
!

!
             !
!

�
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

!

Emilie Passemar!

3.6  Unitarity

  Donoghue, Gasser, Leutwyler’90 !
        Moussallam’99 !

Daub, Dreiner, Hanart, Kubis, Meissner’13 !
!

Form factors
•  Two channel unitarity condition (ππ, KK) (OK up to  √s ~ 1.4 GeV)

n  = ππ, KK

•  General solution:

Canonical solution falling as 1/s for large s 
(obey un-subtracted dispersion relation) 

Polynomials 
determined by 

matching to ChPT

•  Solved iteratively, using input on s-
wave I=0  meson meson scattering

  n = ππ , KK

  Donoghue, Gasser, Leutwyler’90 !
        Moussallam’99 !

π!

π! π!

π! π!

π!

π!

π!

+!

π!

π!

 K

 K

 K

 K

Scattering matrix:!
!

     ππ → ππ, ππ → !
        → ππ,          !
!
!

KK
KK KK KK→!

KK

  Donoghue, Gasser, Leutwyler’90 !
    Osset & Oller’98 !

        Moussallam’99 !



•  Inputs : ππ → ππ, !
!
!
!
!
!
!
!
!
!
!

!
!
!
!

!

•  A large number of theoretical analyses Descotes-Genon et al’01, Kaminsky et al’01,!
Buettiker et al’03, Garcia-Martin et al’09, Colangelo et al.’11 and all agree !

•  3 inputs: δπ (s), δK(s), η from B. Moussallam           reconstruct T matrix!
Emilie Passemar!

Garcia-Martin et al’09!
Buettiker et al’03 !

Inputs for the coupled channel analysis !

KK



!
•  General solution to Mushkhelishvili-Omnès problem:!

•  Canonical solution found by solving dispersive integral equations iteratively 
starting with Omnès functions that are solutions of the one-channel unitary 
condition !

!
!

!

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

!
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Polynomial determined from a !
matching to ChPT + lattice !

Canonical solution falling as 1/s !
for large s (obey unsubtracted !
dispersion relations) !
!

3.7  Dispersion relations !
General solution to Mushkhelishvili-Omnès problem: 

Canonical solution 
Polynomial determined 

from a matching to ChPT + lattice 

Canonical solution is found by solving dispersive integral equations 
iteratively starting with Omnès functions that are solutions of the one-
channel unitary condition 
 



•  Uncertainties:!
!

-  Varying scut  (1.4 GeV2 - 1.8 GeV2) !

-  Varying the matching conditions!

-  T matrix inputs!

0f

Emilie Passemar!

 "σ "

0f

See also Daub et al.’13!

Only unc. from matching conditions here!!



2.4  Comparison with ChPT!

!
!
!

•  ChPT, EFT only valid at low energy for!
!

It is not valid up to E = ! !
!

Emilie Passemar!Emilie Passemar!



3.8  Results: Spectrum !

ρ 0f

Dominated by!
Ø  ρ(770) (photon mediated)!
Ø  f0(980)  (Higgs mediated)!
!

h
+h

Emilie Passemar!

Celis, Cirigliano, E.P.’14 !



3.8  Results: Bounds !

Emilie Passemar! BaBar’10, Belle’10’11’13  except last from CLEO’97 !

Bound:!

  
Yµτ

h 2
+ Yτµ

h 2
≤ 0.13

Celis, Cirigliano, E.P.’14 !



!

•  Dispersive treatment of hadronic part          bound reduced by one order of 
magnitude! !

!
!

•  ChPT, EFT only valid at low energy for!
               not valid up to                     !!
!

3.9  Impact of our results !

Emilie Passemar!
( )E m mτ µ= −

p << 4 ~ 1 GeVfππΛ =

Celis, Cirigliano, E.P.’14 !



Discriminating power of τ → µ(e)ππ  decays !

!

!
!
!

!

• Two basic handles:  2)  Spectra in > 2 body decays 

Spin and isospin of the 
hadronic operator leave 
imprint in the spectrum

Celis-VC-Passemar 1403.5781    

   
Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν
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Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν

   
Leff

S ⊃ −
CS

Λ 2 mτ mqGFµPL,Rτ  qq
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• Two basic handles:  2)  Spectra in > 2 body decays 

Spin and isospin of the 
hadronic operator leave 
imprint in the spectrum
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• Two basic handles:  2)  Spectra in > 2 body decays 

Spin and isospin of the 
hadronic operator leave 
imprint in the spectrum

Celis-VC-Passemar 1403.5781    

Discriminating power of τ → µ(e)ππ  decays !

!

!
!
!

!

• Two basic handles:  2)  Spectra in > 2 body decays 

Spin and isospin of the 
hadronic operator leave 
imprint in the spectrum

Celis-VC-Passemar 1403.5781    

Very different distributions according !
to the final hadronic state!!

   
Leff

D ⊃ −
CD

Λ 2 mτ µσ
µν PL,RτFµν

   
Leff

S ⊃ −
CS

Λ 2 mτ mqGFµPL,Rτ  qq

   
Leff

G ⊃ −
CG

Λ 2 mτGFµPL,Rτ  Gµν
a Ga

µν



4.  Conclusion and outlook !
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Conclusion and outlook !

•  Hadronic tau decays are very important          test of!
–   QCD !

–  EW effects: CPV in τ → Kπντ, Vus, Higgs LFV etc. !
!

•  We have looked at:!

–  2 body: FFs in τ → Kπντ and search for LFV in in τ → ππµ !

–  3 body effects in τ → πππντ  in progress!
!

•  Experimental activities: CLEO, Belle, BaBar, LHCb          Belle II, BESIII, Tau-
Charm factories!

•  Intense theoretical activities : QCD, new physics!
!

•  A lot of very interesting physics remains to be done in the tau sector!!
!
!

•  But we need more experimental measurements and accurate theoretical 
prediction until energies of mτ ~ 1.8 GeV !
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5.  Back-up !



1.2  Hadronic Physics in tau decays !

•  Hadronic Physics: Interactions of quarks at low energy!
–  Precise tests of the Standard Model:!

!

        Extraction of Vus, αS, light quark masses…!
!

–  Look for physics beyond the Standard Model: High precision at 
low energy as a key to new physics? !

!
!
!
!
!
!
!
!

!
!

Emilie Passemar!

+ SUSY loops!
Z’, Charged Higgs,!
Right-Handed!
Currents,….!

ud usd V d V sθ = +



•                                                !

!
!
!
!

•  Use OPE:!

•  From the measurement of!
!
!
!

•  Use instead :!

             SU(3) breaking quantity: the flavour independent piece:                !
!

!
!
!
!
!
!
!
!
!

!
!
!
!
!
�
�
�
	

!
!
!
!
!
!

!
!

!
!
     !

!
!

3.3  Determination of  Vus !

  
Rτ ≡

Γ τ − →ντ + hadrons( )
Γ τ − →ντe

−ν e( ) ≈ NC

Emilie Passemar ! 48 !

ud usd V d V sθ = +

  Rτ
NS mτ

2( ) = NC  SEW Vud

2
1 + δ P + δ NP

ud( )

  Rτ
S mτ

2( ) = NC  SEW Vus

2
1 + δ P + δ NP

us( )

M. González-Alonso /23 

  Extraction$of$αS$and$Vus.$The$idea$is$simple:$

(Inclusive) Hadronic tau decays 

Tau physics 

In
te

ns
it

y 
F

ro
nt

ie
r 

20
13

 

€ 

Rτ = Rτ
S=0 + Rτ

S≠0 ≈ NC Vud
2

+ NC Vus
2
≈ 2.85 + 0.15

€ 

Vus
2

Vud
2 ≈

Rτ
S≠0

Rτ
S=0

€ 

Vus
2

The complication is here! 

QCD switch 

(αS≠0) 

[exp: ~3.628(9)] 

€ 

Rτ ≡
Γ τ →ντ + hadrons( )
Γ τ →ντ  e

−  ν e( )
≈ NC

[exp: ~3.467(8) + 0.161(3)] 

+ corr. 

€ 

Rτ
S=0 ≈ NC Vud

2
+O(α s)

€ 

α s

11 

 Rτ
S

 Vus

  
δ Rτ ≡

Rτ ,NS

Vud

2 −
Rτ ,S

Vus

2

   δ P ∼ 20% cancels!!



Results !

!
!
!
!
•    δRτ,theo determined from OPE (L+T) + phenomenology!
!
!
!
!
!

Input : ms                                                                         Nf=2+1+1 lattice average !
!
!
!

•   Tau data :                             and !

!
•   Vud : !
!
!
!
 !

49 !

2 ,

,
,2

S
us

V A
th

ud

R
V

R
R

V

τ

τ
τδ+

=
−

  Rτ ,S = 0.1646(23)   Rτ ,NS = 3.4721(77) HFLAV’16�
+	BaBar@ICHEP18	

0.97425(22)udV = Towner	&	Hardy’08	

( ) ( ) 2
, 0.1544 0.0037 9.3 3.4 (0.0034 0.0028)th sR mτδ = ± + ± + ±

Gamiz,	Jamin,	Pich,	Prades,	Schwab’07,	Maltman’11		

  
ms 2 GeV, MS( ) = 93.9 ±1.1

FLAG’16	

J=0 !
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Results !

!
!
!
!
!
!
!

•                               !

!
•    Determination dominated by experimental uncertainties! !
!
•    2.9σ away from unitarity! !
!
 !
!
!
!
!
 !

50 !

2 ,

,
,2

S
us

V A
th

ud

R
V

R
R

V

τ

τ
τδ+

=
−

  δ Rτ ,th = 0.240(30)

  Vus = 0.2194 ± 0.0016exp ± 0.0010th

Emilie Passemar !



3.3  Determination of Vus !

0.22 0.225
|us|V

, PDG 2016l3K
 0.0010±0.2237 

, PDG 2016l2K
 0.0007±0.2254 

CKM unitarity, PDG 2016
 0.0009±0.2258 

 s incl., HFLAV Spring 2017→ τ
 0.0021±0.2186 

 s incl.→ τ
 0.0019±0.2195 

νπ → τ / ν K→ τ
 0.0016±0.2241 

 averageτ
 0.0014±0.2222 

A.L. elab.
CKM 2018
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3.3  τ → Kπντ CP violating asymmetry

52!

!

•  The angular CP asymmetry from Belle: !

•  When integrating on the angle the interference term between scalar and 
vector vanishes!

!
!
 !
!

!
!

   

dΓ τ - → Kπ −ντ( )
d Q2 d cosθ  d cosβ

= A(Q2 ) − B(Q2 ) 3cos2ψ −1( ) 3cos2 β −1( )⎡⎣ ⎤⎦ f+ (s)
2

                                     + mτ
2 !f0(s)

2
−C(Q2 )cosψ cosβ Re f+ (s) !f0

*(s)( )
CP violating term!
S-P interference !

Phenomenology: Two hadron system 

Hadronic Current:                (Kp system will only arrow Jp=1- and 0+) 
 

Full differential cross section in Kprest frame. 

 
 
 

 
Integrated over angular distribution 
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3.3  τ → Kπντ CP violating asymmetry

53!

!

•  We need a tensor interaction to get some interference: !

!
!

•  When integrating the interference term between vector and tenson does not 
vanish: !

!
!
 !
!

!
!

How to understand BaBar’s rate asymmetry 

A recent paper discuss the possibility about the tensor interaction 
(H.Devi, L.Dhargyal,N. Sinha, PRD 90,013016(2014). 
Effective Hamiltonian of Tensor int. 
 
 
G’ is an imaginary coupling 
 
The Vector-Tensor interference term does not vanish after 
angular integration. 
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FIG. 3: Diagrammatic representation of the electromagnetic
dipole operator contributing to the neutron EDM produced
by inserting the (τ̄σµνRτ )(ūσµνRu) operator (left), and the
contribution to D–D̄ mixing originating from the double in-
sertion of the operator (τ̄σµνRτ )(c̄σµνRu) (right, the second
permutation is omitted).

involving the τ and the up quark only. The renormaliza-
tion group evolution [41] of this operator then produces
an up-quark EDM du(µ),

LD = −
i

2
du(µ)ūσ

µνγ5uFµν , (31)

via the diagram shown in Fig. 3. Solving the RG follow-
ing [42–44] we find

du(µ) =
emτ

v2
V 2
us

π2
Im cT (µ) log

Λ

µ

≃ 3.0× Im cT (µ) log
Λ

µ
× 10−21 e cm. (32)

Using the 90% C.L. bound dn = guT (µ)du(µ) < 2.9 ×
10−26 e cm [45] and the recent lattice result [46] guT (µ =
2GeV) = −0.233(28) we obtain (µτ = 2GeV)

|Im cT (µτ )| ≤
4.4× 10−5

log Λ
µτ

<∼ 10−5, (33)

where the last inequality holds for Λ >∼ 100GeV. This
bound is based on the assumption that there are no other
contributions to the neutron EDM canceling the effect of
cT . However, for values of Im cT (µτ ) ∼ 0.1 required to
explain the tau CP asymmetry, the cT contribution alone
would predict a neutron EDM four orders of magnitude
larger than the current bound, requiring an extraordinary
cancellation at the level of one part in 104.
Such a cancellation could in principle occur with op-

erators related to the flavor structure C3311 in (28),
since the neutron EDM is sensitive to the combination
VudIm c11T + VusIm c21T , where c21T = cT and c11T is defined
analogously to (30). However, yet another combination
appears in D–D̄ mixing, which is very sensitive to the
imaginary part of the Wilson coefficients (as for example
defined in [47])
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where we have neglected the effect of external momenta,
i.e. the mass of the charm quark. Using the global fit
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FIG. 4: Allowed regions in the Im c21T –Im c11T plane from the
neutron EDM and D–D̄ mixing (for φ = ±π/4 and Λ =
1TeV), compared to the favored region from the τ → KSπντ
CP asymmetry. The exclusion regions for φ = ±π/4 differ
due to the asymmetric form of the fit result in [48].

of [48] and assuming the phase of Vcdc11T + Vcsc21T to be
equal to φ = ±π/4,3 this leads to the situation depicted
in Fig. 4. Since (34) requires the insertion of two effective
operators, the leading contribution here is of dimension 8,
while in an ultraviolet complete model there is in general
already a dimension-6 contribution, making the bounds
from D–D̄ mixing even stronger than the one shown in
Fig. 4. To evade all bounds, one would therefore not
only have to cancel the cT contribution to the neutron
EDM at the level of 10−4, but also tune the combination
Vcdc11T + Vcsc21T close to purely imaginary to evade the
constraint from D–D̄ mixing.

CONCLUSIONS

In this article we examined non-standard contributions
to the CP asymmetry in τ → KSπντ . We find that at the
dimension 6 level only the tensor operator can lead to di-
rect CP violation, with negligible QED corrections from
the scalar operator. However, the effect of the tensor
operator is much smaller than previously estimated as a
consequence of Watson’s final-state-interaction theorem.
Therefore, a very large imaginary part of the Wilson co-
efficient of the tensor operator would be required in order
to account for the current tension between theory and ex-
periment. In fact, we find in a model-independent analy-
sis that this is in general in conflict with the bounds from
the neutron EDM and D–D̄ mixing, making a BSM ex-
planation (realized above the electroweak breaking scale)

3 In general, the constraint is diluted by
√

| tan φ| and therefore
disappears for φ = ±π/2.

In conflict with bounds from !
neutron EDM and DD mixing !

How to understand BaBar’s rate asymmetry 

A recent paper discuss the possibility about the tensor interaction 
(H.Devi, L.Dhargyal,N. Sinha, PRD 90,013016(2014). 
Effective Hamiltonian of Tensor int. 
 
 
G’ is an imaginary coupling 
 
The Vector-Tensor interference term does not vanish after 
angular integration. 
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FIG. 3: Diagrammatic representation of the electromagnetic
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by inserting the (τ̄σµνRτ )(ūσµνRu) operator (left), and the
contribution to D–D̄ mixing originating from the double in-
sertion of the operator (τ̄σµνRτ )(c̄σµνRu) (right, the second
permutation is omitted).

involving the τ and the up quark only. The renormaliza-
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where the last inequality holds for Λ >∼ 100GeV. This
bound is based on the assumption that there are no other
contributions to the neutron EDM canceling the effect of
cT . However, for values of Im cT (µτ ) ∼ 0.1 required to
explain the tau CP asymmetry, the cT contribution alone
would predict a neutron EDM four orders of magnitude
larger than the current bound, requiring an extraordinary
cancellation at the level of one part in 104.
Such a cancellation could in principle occur with op-

erators related to the flavor structure C3311 in (28),
since the neutron EDM is sensitive to the combination
VudIm c11T + VusIm c21T , where c21T = cT and c11T is defined
analogously to (30). However, yet another combination
appears in D–D̄ mixing, which is very sensitive to the
imaginary part of the Wilson coefficients (as for example
defined in [47])
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where we have neglected the effect of external momenta,
i.e. the mass of the charm quark. Using the global fit
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of [48] and assuming the phase of Vcdc11T + Vcsc21T to be
equal to φ = ±π/4,3 this leads to the situation depicted
in Fig. 4. Since (34) requires the insertion of two effective
operators, the leading contribution here is of dimension 8,
while in an ultraviolet complete model there is in general
already a dimension-6 contribution, making the bounds
from D–D̄ mixing even stronger than the one shown in
Fig. 4. To evade all bounds, one would therefore not
only have to cancel the cT contribution to the neutron
EDM at the level of 10−4, but also tune the combination
Vcdc11T + Vcsc21T close to purely imaginary to evade the
constraint from D–D̄ mixing.
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to the CP asymmetry in τ → KSπντ . We find that at the
dimension 6 level only the tensor operator can lead to di-
rect CP violation, with negligible QED corrections from
the scalar operator. However, the effect of the tensor
operator is much smaller than previously estimated as a
consequence of Watson’s final-state-interaction theorem.
Therefore, a very large imaginary part of the Wilson co-
efficient of the tensor operator would be required in order
to account for the current tension between theory and ex-
periment. In fact, we find in a model-independent analy-
sis that this is in general in conflict with the bounds from
the neutron EDM and D–D̄ mixing, making a BSM ex-
planation (realized above the electroweak breaking scale)

3 In general, the constraint is diluted by
√

| tan φ| and therefore
disappears for φ = ±π/2.
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by inserting the (τ̄σµνRτ )(ūσµνRu) operator (left), and the
contribution to D–D̄ mixing originating from the double in-
sertion of the operator (τ̄σµνRτ )(c̄σµνRu) (right, the second
permutation is omitted).

involving the τ and the up quark only. The renormaliza-
tion group evolution [41] of this operator then produces
an up-quark EDM du(µ),

LD = −
i

2
du(µ)ūσ
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where the last inequality holds for Λ >∼ 100GeV. This
bound is based on the assumption that there are no other
contributions to the neutron EDM canceling the effect of
cT . However, for values of Im cT (µτ ) ∼ 0.1 required to
explain the tau CP asymmetry, the cT contribution alone
would predict a neutron EDM four orders of magnitude
larger than the current bound, requiring an extraordinary
cancellation at the level of one part in 104.
Such a cancellation could in principle occur with op-
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since the neutron EDM is sensitive to the combination
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where we have neglected the effect of external momenta,
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of [48] and assuming the phase of Vcdc11T + Vcsc21T to be
equal to φ = ±π/4,3 this leads to the situation depicted
in Fig. 4. Since (34) requires the insertion of two effective
operators, the leading contribution here is of dimension 8,
while in an ultraviolet complete model there is in general
already a dimension-6 contribution, making the bounds
from D–D̄ mixing even stronger than the one shown in
Fig. 4. To evade all bounds, one would therefore not
only have to cancel the cT contribution to the neutron
EDM at the level of 10−4, but also tune the combination
Vcdc11T + Vcsc21T close to purely imaginary to evade the
constraint from D–D̄ mixing.

CONCLUSIONS

In this article we examined non-standard contributions
to the CP asymmetry in τ → KSπντ . We find that at the
dimension 6 level only the tensor operator can lead to di-
rect CP violation, with negligible QED corrections from
the scalar operator. However, the effect of the tensor
operator is much smaller than previously estimated as a
consequence of Watson’s final-state-interaction theorem.
Therefore, a very large imaginary part of the Wilson co-
efficient of the tensor operator would be required in order
to account for the current tension between theory and ex-
periment. In fact, we find in a model-independent analy-
sis that this is in general in conflict with the bounds from
the neutron EDM and D–D̄ mixing, making a BSM ex-
planation (realized above the electroweak breaking scale)

3 In general, the constraint is diluted by
√

| tan φ| and therefore
disappears for φ = ±π/2.
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•  Decay rate master formula !
!
!
!

!
!

 !
!

!
!
!
!
!

Extraction of Vus !

  
f+ 0( )Vus = 0.2141 ± 0.0014IK

± 0.0021exp   Vus = 0.2216 ± 0.0027

  f+ 0( ) = 0.9661 32( )

Emilie Passemar!

  
BR τ → K 0π −ντ( ) = 0.416 ± 0.008( )%

Belle’14 !

Γ τ → Kπντ γ⎡⎣ ⎤⎦( ) = GF
2mτ

5

96π 3 CK
2 SEW

τ Vus
2
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K 0π −
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2
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⎝
⎞
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2

ew 1.0201S =

Marciano & Sirlin’88, !
Braaten & Li’90, Erler’04 !

( )0

EM 0.15 0.2 %K τδ = − ±

  IK 0
τ = 0.50432 ± 0.01721

Antonelli, Cirigliano, Lusiani, E.P.’13 !



•  Decay rate master formula !
!
!
!

!
!

 !
!

•  Result of fit to Kl3 + τ       Kπντ and Kπ scattering data including!
     inelasticities in the dispersive FFs !

!
!
!
!
!

Extraction of Vus !

  
f+ 0( )Vus = 0.2141 ± 0.0014IK

± 0.0021exp   Vus = 0.2216 ± 0.0027

  f+ 0( ) = 0.9661 32( )

Emilie Passemar!
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  f+ 0( )Vus = 0.2163 ± 0.0014

FLAG’13 !

Bernard’14!



4.4  Model discriminating power of Tau processes !
•  Summary	table:	

!

•  Recent	progress	in	τ	→	μ(e)ππ		using	dispersive	techniques�
�
	

•  Hadronic	part:																																																																																												with	
!
!

•  Form	factors	determined	by	solving	2-channel	unitarity	condi4on,	with	I=0	s-wave	
ππ		and		KK	scaRering	data	as	input		

!

Discriminating power: τLFV matrix

Celis,	Cirigliano,	E.P.’14	
Daub	et	al’13	

  
Hµ = ππ  Vµ − Aµ( )eiLQCD  0 = Lorentz  struct.( )µ

i
Fi s( )   

s = p
π + + p

π −( )2

Celis,	Cirigliano,	E.P.’14	

Form factors
•  Two channel unitarity condition (ππ, KK) (OK up to  √s ~ 1.4 GeV)

n  = ππ, KK

•  General solution:

Canonical solution falling as 1/s for large s 
(obey un-subtracted dispersion relation) 

Polynomials 
determined by 

matching to ChPT

•  Solved iteratively, using input on s-
wave I=0  meson meson scattering

  n = ππ , KK
Emilie Passemar! 56!



!
•  Knowing the discontinuity of X(s)         write a dispersion relation for it!
!

•  Analyticity of the FFs: X(z) is!
–  real for z < sth !
–  has a branch cut for z > sth !

–  analytic for complex z!
!

•  Cauchy Theorem and Schwarz reflection principle:!
!

!
!

!

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

!

Emilie Passemar! 57 !

Canonical solution                      :!  X (s) = C(s), D(s)

24ths mπ≡

   
X (s) = 1

π
dz X (z)

z − sC!∫

Re(z)

  Im(z)

 Λ
2

 C

= 1
2iπ

dz
disc F (z)⎡⎣ ⎤⎦
z − s − iεsth=4Mπ

2

Λ2

∫ + 1
2iπ

dz F (z)
z − sz =Λ2∫

  
X (s) = 1

π
dz

Im X (z)⎡⎣ ⎤⎦
z − s − iε

4 Mπ
2

∞

∫
Λ→ ∞ X(s) can be reconstructed !

everywhere from the !
knowledge of ImX(s)!
!



T matrix parametrization !

where Tmn represent the T matrix elements which describe the scattering among the relevant

channels (n = ⇡⇡,KK̄ with ` = 0 and I = 0). The general solution to the condition (14) that

does not grow faster than a power of s at infinity can be written as [71, 74]:

 

F⇡(s)
2p
3
FK(s)

!

=

 

C1(s) D1(s)

C2(s) D2(s)

! 

PF (s)

QF (s)

!

, (15)

where PF (s) and QF (s) are polynomials and the “canonical” solutions Cn(s), Dn(s) generalize

the Omnès factor appearing in the solution of the one-channel unitarity condition [75].

Provided that the S-matrix satisfies certain asymptotic conditions at large s (namely that

S12 ! 0 and Arg(det(S)) ! 4⇡), the solutions Cn(s) and Dn(s), generically denoted by Xn(s)

behave as 1/s for |s| ! 1. Therefore, the Xn(s) satisfy unsubtracted dispersion relations,

which combined with the unitarity condition (14) lead to a set of coupled Muskhelishvili-Omnès

singular integral equations [74, 75]

Xn(s) =
2
X

m=1

1

⇡

Z 1

4M2
⇡

dt

t� s
T ⇤
nm(t)�m(t)Xm(t) , X(s) = C(s), D(s) . (16)

So in order to find a solution to the MO problem described above, we need to specify an

appropriate T matrix. The T matrix is related to the S matrix by

Smn = �mn + 2i
p
�m�n Tmn , (17)

where the kinematical factor �m(s) represents the velocity of the two particles in the centre-of-

mass frame defined in Eq. (10) with �1(s) = �⇡(s) and �2(s) = �K(s). In turn, the ` = 0, I = 0

projection of the S matrix is parameterized as follows

S =

 

cos� e2i�⇡ i sin� ei(�⇡+�K)

i sin� ei(�⇡+�K) cos� e2i�K

!

, (18)

and therefore we need three input functions, the inelasticity ⌘00 ⌘ cos �, the ⇡⇡ S-wave phase

shift �⇡(s) and the KK̄ phase shift �K(s). Up to some energy, these inputs are determined by

solving the Roy-Steiner equations for ⇡⇡ [64, 65, 76, 77] and K⇡ scattering [78]. Since Eq. (14)

is a reasonable approximation to the exact discontinuity only in the energy region below some

cut scut . m2
⌧ , we use the following strategy: for s < scut we use the inputs for the two phase

shifts �⇡(s) and �K(s) and the inelasticity ⌘00(s) coming from a recent update of the solutions of

Roy-Steiner equations [78] 3 provided by B. Moussallam. For s > scut, we drive the T matrix to

zero consistently with unitarity, by forcing the three input functions to the asymptotic values

�⇡ = 2⇡, �K = 0, ⌘00 = 1, which ensure that the canonical solutions to the MO problem fall o↵

as 1/s [71,72,79]. We have varied scut in the range (1.4 GeV)2 � (1.8 GeV)2, and find that the

form factors are insensitive to scut for
p
s < 1.4 GeV.

3The input values M⇡ = 139.57018 MeV and MK = 495.7 MeV have been used to generate these inputs.
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•  Inelasticity:!

•                         :  ππ S wave phase shift!

•             : KK S wave phase shift!
!
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!
•  General solution to Mushkhelishvili-Omnès problem:!

!
!

•  Canonical solution found by solving the dispersive integral equations iteratively 
starting with Omnès functions!
!

!

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

!

Emilie Passemar!

Polynomial determined from a !
matching to ChPT + lattice !

Canonical solution falling as 1/s !
for large s (obey unsubtracted !
dispersion relations) !
!

  X (s) = C(s), D(s)

59 !

3.4  Dispersion relations !



!
•  Fix the polynomial with requiring                        + ChPT: !

•  Feynman-Hellmann theorem: !

!
!
•  At LO in ChPT: !

!
!

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

!

Emilie Passemar! 60 !

Determination of the polynomial!

FP (s)→ 1 / s

Brodsky & Lepage’80 !



!
•  Fix the polynomial with requiring                        + ChPT: !

•  Feynman-Hellmann theorem: !

!
!
•  At LO in ChPT: !

!
!

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

!
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Determination of the polynomial!

FP (s)→ 1 / s

Brodsky & Lepage’80 !



•  At LO in ChPT: !
!

!
!

•  For the scalar FFs:!

!
!
!

•  Problem: large corrections in the case of the kaons!!
Use lattice QCD to determine the SU(3) LECs !

!

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

!

Emilie Passemar! 62 !

Determination of the polynomial!

Bernard, Descotes-Genon, Toucas’12 !
Daub, Dreiner, Hanart, Kubis, Meissner’13 !



•  For θP enforcing the asymptotic constraint is not consistent with ChPT!
The unsubtracted DR is not saturated by the 2 states!

!

Relax the constraints and match to ChPT!
!
!
!
!
!
!
!

             with !
 !
     !
•  At LO ChPT:  !

•  Higher orders               !
!

!
!

!

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

!

63 !

Determination of the polynomial!

!f = df
ds

⎛
⎝⎜

⎞
⎠⎟ s=0

   
!θπ ,K = 1

Emilie Passemar!

!θK = 1.15 ± 0.1



•  Contribution from dipole diagrams 
 

 
 
 

 
 

 
•      

 
 

 

     with the vector form factor :  
 
 
•   

 
 
 

•  Diagram only there in the case of                          absent for 
        neutral mode more model independent    

. .eff L L R Rc Q c Q h cγ γ= + +L

with the dim-5 EM penguin operators : 
 
 ( ), ,28L R L R

eQ m P Fαβ
γ γ τ αβµσ τ

π
=

τ µ π π− − + −→ 0 0τ µ π π− −→

( ),L R YC f τµ=

Emilie Passemar 

3.1  Constraints from τ     µππ 

65 



Determination of FV(s)!

•  Vector form factor!
!

Ø  Precisely known from experimental measurements!
!
!
!

!
Ø  Theoretically: Dispersive parametrization for FV(s)!

!
!
!
!
!
!

Ø  Subtraction polynomial + phase determined from a fit to the                        
Belle data !
!

65 !

e e π π+ − + −→ and                          (isospin rotation)!0
ττ π π ν− −→

FV (s) = exp λV
' s
mπ
2 +
1
2
λV
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'2( ) s
mπ
2

"

#
$$

%

&
''

2

+
s3

π
ds'
s'3

φV (s')
s'− s − iε( )4mπ

2

∞

∫
*

+

,
,

-

.

/
/

Extracted from a model including !
3 resonances ρ(770), ρ’(1465)  !
and ρ’’(1700)  fitted to the data !

Emilie Passemar!

Guerrero, Pich’98,  Pich, Portolés’08 !
Gomez, Roig’13 !

0
ττ π π ν− −→



Determination of FV(s)

Emilie Passemar!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Determination of FV(s) thanks to precise measurements from Belle!!
!
!

!

ρ(770)!

ρ’(1465)!

ρ’’(1700) !
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