#### XYZ states at BESIII

Zhentian Sun Institute of High Energy Physics, China On behalf of BESIII collaboration

PHIPSI2019, BINP, Novosibirsk, Russia, Feb. 25-Mar. 2nd, 2019



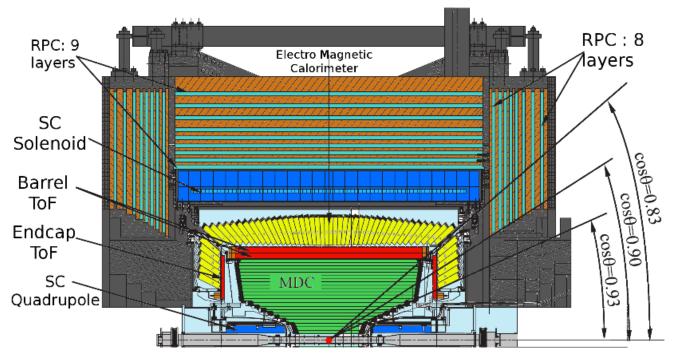


### Outline

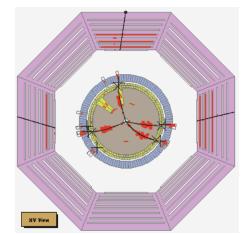
- Introduction
- □ Y(1--) states
  - > Y→π<sup>+</sup>π<sup>-</sup>J/ψ (ψ'), Y→π<sup>+</sup>π<sup>-</sup>h<sub>c</sub>, Y→π<sup>+</sup>D<sup>0</sup>D<sup>\*-</sup>
  - $\succ Y \rightarrow \omega \chi_{cJ,}$
  - $\succ \Upsilon \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$
- □ A quick view of the Zc states in BESIII
  - Determination of J<sup>p</sup> of Zc(3900)
  - $\diamond$  Search for  $Z_c^{\pm} \rightarrow \rho^{\pm} \eta_c$

X states

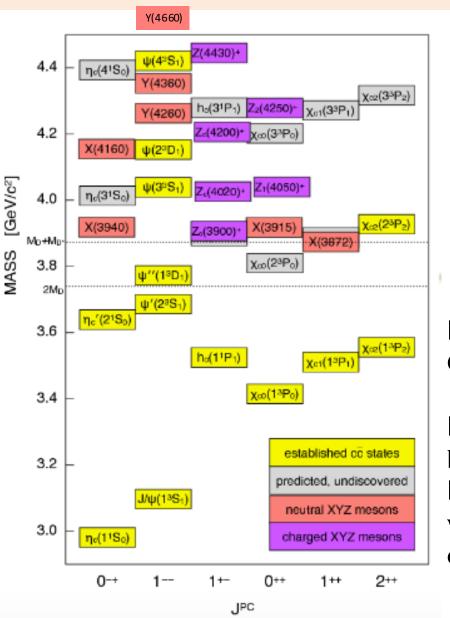
- > Observation of  $e^+e^- \rightarrow \gamma X(3872)$ ,  $X(3872) \rightarrow \pi^+\pi^- J/\psi$
- ≻e⁺e⁻→γX(3872), X(3872)→ωJ/ψ
- > Observation of X(3872)  $\rightarrow \pi^0 \chi_{c1}(1P)$

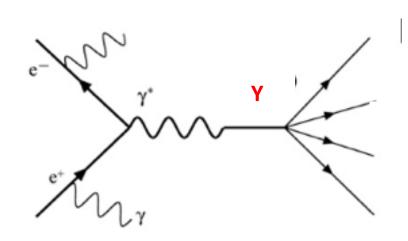

Summary

#### Beijing Electron and Positron Collider(BEPCII)




Beam energy: 1~2.3GeV Ecms= 2~4.6 GeV


### **Beijing Spectrometer (BESIII)**

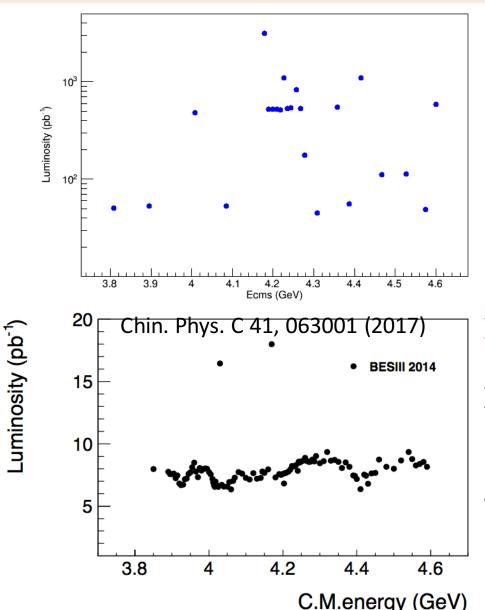



- Inner to Outside:
- ✓ Main Drift chamber(MDC),
- ✓ Time of flight System(TOF),
- Electromagnetic Calorimeter(EMC),
- Solenoid super-conducting magnet(SSM),
- ✓ Muon chamber(MUC)
- Acceptance: 93% of 4π



### **XYZ physics at BESIII**






□ A lot of states not well established in Open charm range

■ BESIII can directly generate Y(1<sup>-</sup>)states by e<sup>+</sup>e<sup>-</sup> annihilation.

**Can also generate states with other J^{pc} with radiative decay or hadronic decay of \psi or Y.** 

#### **BESIII data sets for XYZ study**

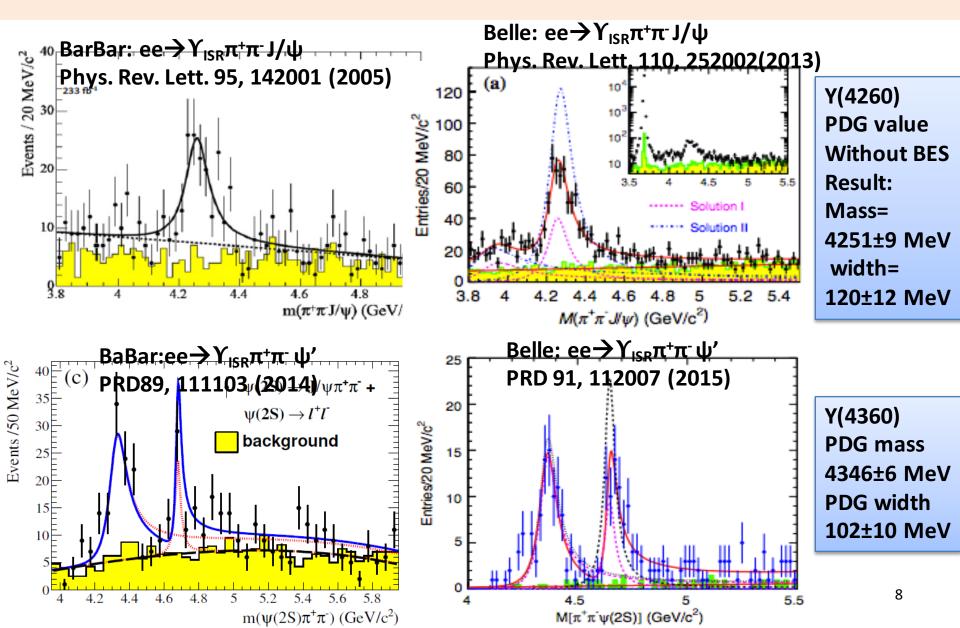


#### **XYZ data**

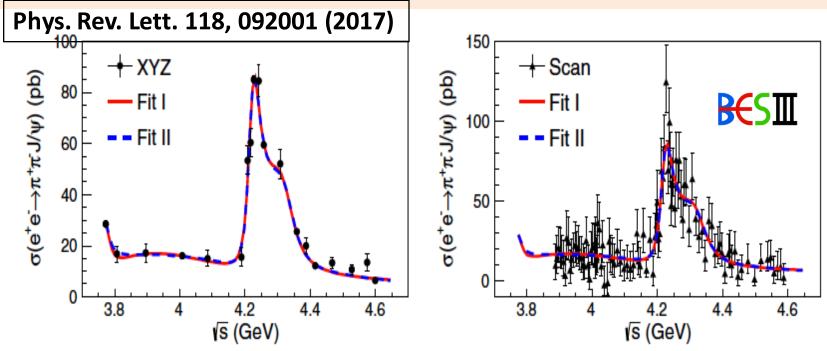
□~12 fb<sup>-1</sup> e<sup>+</sup>e<sup>-</sup> collision data event in open charm region from 3.8-4.6GeV.

□Massive events on several special energy points: Such as 4.26GeV, and 4.36GeV

#### **R-scan data**


□Dozens of energy points with luminosity < 20 pb<sup>-1</sup>

□Initially taken for R study, can also help the XYZ study


#### Part I: $e^+e^- \rightarrow \psi(1^{--})$ (well estabilished) $\rightarrow ...$ or $e^+e^- \rightarrow Y(1^{--})$ (not so well estabilished) $\rightarrow ...$



### Y(4260),Y(4360),Y(4660): some history



#### $e^+e^- \rightarrow \pi^+\pi^- J/\psi$



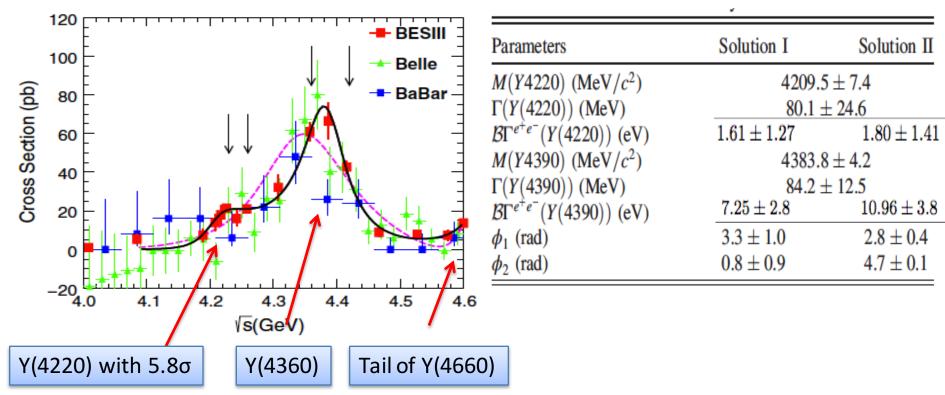
Simultaneous fit to XYZ data(left) and R-scan data (right)

**Coherent sum of two Breit-Wigner like structure plus one incoherent**  $\psi$ (3770)

 $M = (4222.0\pm3.1\pm1.4) \text{ MeV}, \Gamma = (44.1\pm4.3\pm2.0) \text{ MeV},$ 

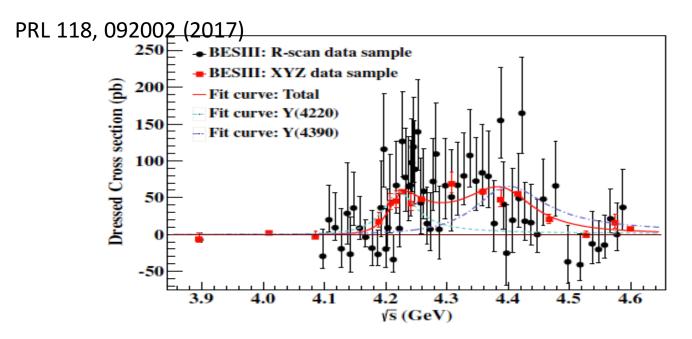
Lower and narrower than previous Y(4260) PDG value

Y(4260)→Y(4220)?


#### M = (4320.0±10.4±7) MeV, Γ = (101.4±25±10) MeV,

#### a little bit lower than Y(4360) PDG

□Compare with one Breit-Wigner fit, the significance of the second Breit-wigner is 7.6σ □Is this Y(4260) + Y(4360) ? The first observation of Y(4360)  $\rightarrow \pi^+\pi^- J/\psi$ ? □Y(4008) is not confirmed



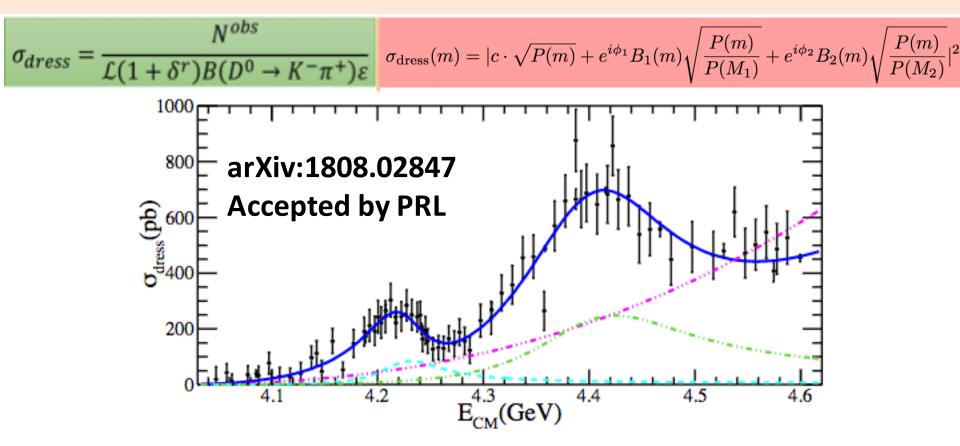

#### PRD 96, 032004 (2017)



□Cross section of  $e^+e^- \rightarrow \pi^+\pi\psi(3686)$  has been measured at 16 energy points from 4.008 to 4.600 GeV. □Y(4220) is needed(5.8 $\sigma$ )

 $e^+e^- \rightarrow \pi^+\pi^-h_c$ 

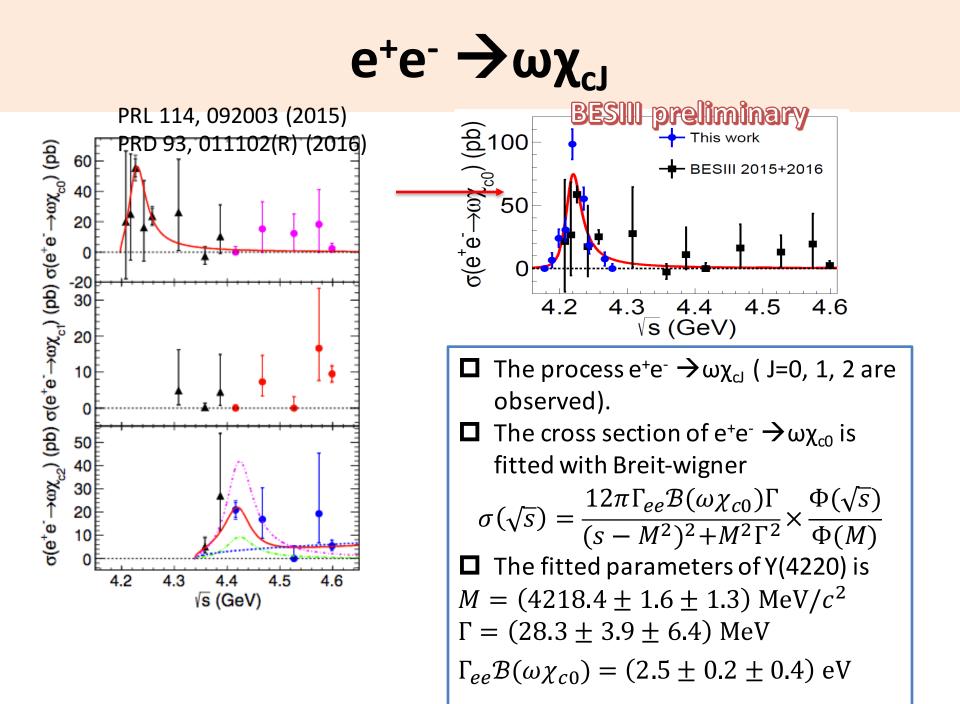



Fitted with coherent sum of two Breit-Wigner like structue

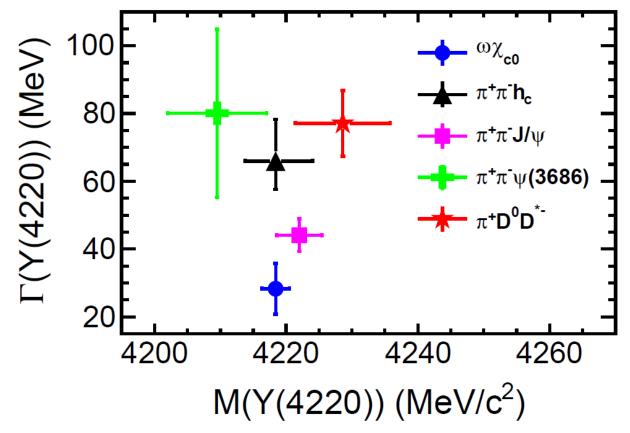
> 
$$M_1$$
=4218.4<sup>+5.5</sup><sub>-4.5</sub>±0.9 MeV/c<sup>2</sup>,  $\Gamma_1$ = 66.0<sup>+12.3</sup><sub>-8.3</sub>±0.4 MeV → Y(4220)

>  $M_2$ =4391.5<sup>+6.3</sup><sub>-6.8</sub>±1.0 MeV/c<sup>2</sup>,  $\Gamma_2$ =139.5<sup>+16.2</sup><sub>-20.6</sub>±0.6 MeV → Y(4390)

The Y(4220) here is consistent with the states observed in  $\pi^+\pi J/\psi$  around 4222MeV


 $e^+e^- \rightarrow \pi^+D^0D^{*-}$ 




Fit with a three body phase space term (pink dashed line) and two relativistic BW functions (green dashed double-dot line and aqua dashed line).

$$M(Y(4220)) = (4228.6 \pm 4.1 \pm 5.9) MeV/c^{2}$$
  

$$\Gamma(Y(4220)) = (77.1 \pm 6.8 \pm 6.9) MeV/c^{2}$$

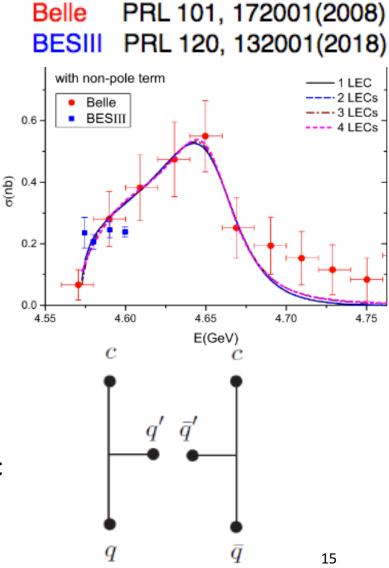


### Y(4260)→Y(4220)



The measured mass and width of *Y*(4220) from the different processes.

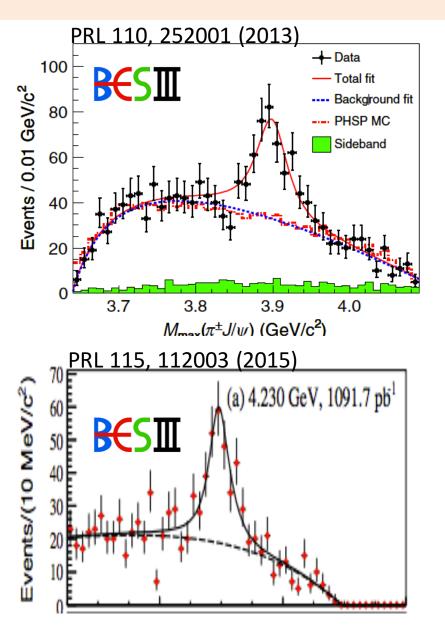
#### $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ and Y(4660)


 $\Box$  Using 10 decay processes to reconstruct  $\Lambda_c$ ,  $\sigma(e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-)$  is measured at 4 energy points

□ Exotic? Y(4660)→  $\pi^+\pi^-\psi'$ ,  $\sigma_{peak} \sim 0.04$ nb Y(4660)→ $\Lambda_c^+\overline{\Lambda}_c^-$ ,  $\sigma_{peak} \sim 0.55$ nb Y(4660) baryonic coupling ≥ 10 mesonic coupling

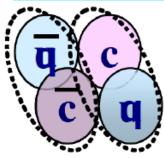
#### Y(4660) is a charmed baryonium?

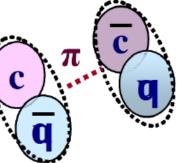
A charmed four quarks states decay by a light quark pair popping up from the vacuum and falling apart as a charmed baryon pair PRD 72, 031502(2005), L.Maiana et.al. PRL104, 132005(2010), G. Cotugno et.al.


□ Currently, BESIII result and Belle result doesn't agree so well, data taking above 4.6 GeV by BESIII will help to clarify this.

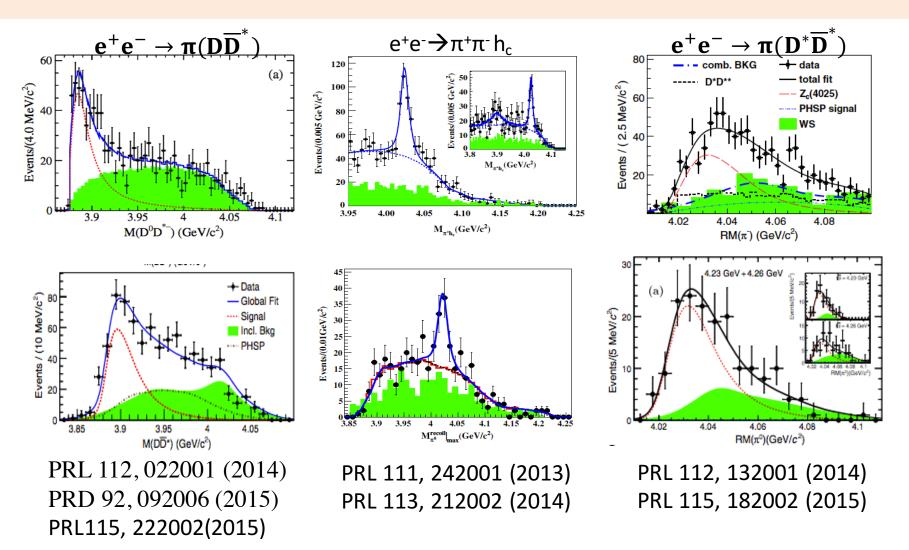


#### Part II: Zc states





# Zc(3900)<sup>±,0</sup> in π<sup>+</sup>π<sup>-</sup> J/ψ, π<sup>0</sup>π<sup>0</sup> J/ψ




The mass of Zc(3900) is in opencharm range and strongly coupled to charm→it should contain a (ccbar) pair.
Zc(3900)<sup>±</sup> is charged→ need at least two more quarks to form a charge unit.

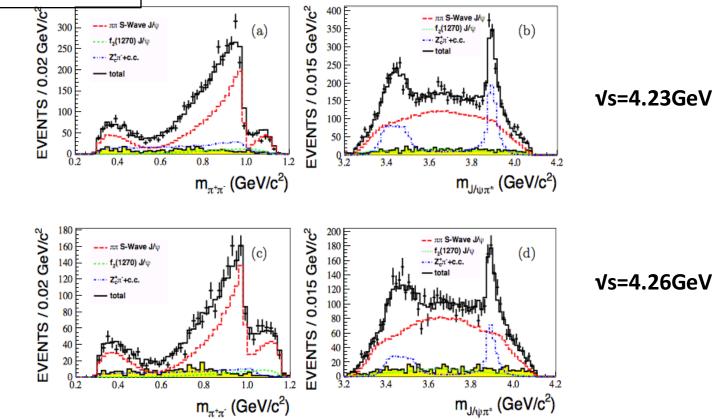
Z<sub>c</sub>(3900) is a four quark states? ☐Tetraquark states? Phys. Rev. D89,054019(2014); Phys. Rev. D90,054009(2014); ☐Zc(3900) is near the threshold of (DD\*)→ A molecular states? Arxiv:1303.6608, 1304.2882 OR other explanation?





# Zc(3900)/(3885), Zc(4020)/(4025)




### The BESIII result for Zc family

For reference: the mass threshold of m(DD\*)~3875MeV, M(D\*D\*)~4014MeV Is Zc(3900) and Zc(3885) same sates? Zc(4020) and Zc(4025)?

|          | C/N     | channel             | Mass (MeV)                   | Width (MeV)             | σ(ee→πZc, Zc→…)<br>@4.26GeV pb |
|----------|---------|---------------------|------------------------------|-------------------------|--------------------------------|
| Zc(3900) | charged | π <sup>±</sup> J/ψ  | 3899.0±3.6±4.9               | 46±10±20                | 13.5±5.2                       |
|          | Neutral | π <sup>0</sup> J/ψ  | 3894.8±2.3±2.7               | 29.6±8.2±8.2            | 4.0±0.9                        |
| 7-(2005) | charged | (DD*) <sup>±</sup>  | 3881.7±1.6±1.6               | 26.6±2.0±2.1            | 108.4±6.9±8.8                  |
| Zc(3885) | Neutral | (DD*) <sup>0</sup>  | $3885.7^{+4.3}_{-5.7}\pm8.4$ | $35^{+11}_{-12} \pm 15$ | 47±9±10                        |
| Zc(4020) | Charged | $\pi^{\pm} h_c$     | 4022.9±0.8±2.7               | 7.9±2.7±2.6             | 7.4±1.7±2.1±1.2                |
|          | Neutral | $\pi^0 h_c$         | 4023.9±2.2±3.8               | Fixed                   | 8.5±2.9±1.1±1.3                |
|          | charged | (D*D*)±             | 4026.3±2.6±3.7               | 24.8±5.6±7.7            | 89.0±18.7                      |
| Zc(4025) | Neutral | (D*D*) <sup>0</sup> | $4025.5^{+2.0}_{-4.7}\pm3.1$ | 23.0±6.0±1.0            | 43.4±8.0±5.4                   |

#### Determination of J<sup>p</sup> of Zc(3900)

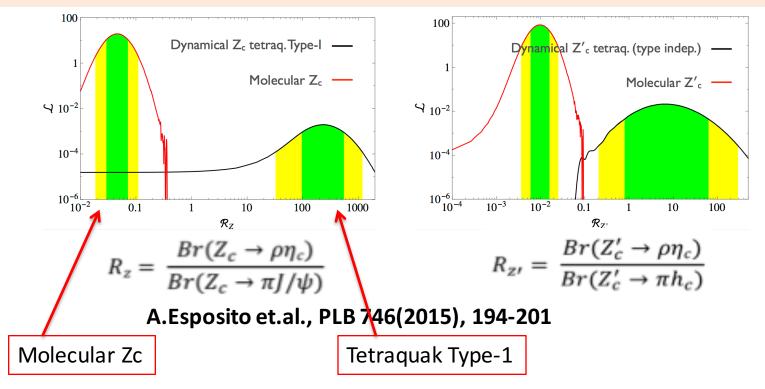
#### PRL 119, 072001 (2017)



**A**mplitude analysis with helicity formalism taking  $\pi^+\pi^-J/\psi$  as final states **S**imultaneous fit to data samples at 4.23GeV and 4.26GeV  $\pi^+\pi^-$  spectrum is parameterized with  $\sigma$ , f<sub>0</sub>(980), f<sub>2</sub>(1270) and f<sub>0</sub>(1370)

### Determination of J<sup>p</sup> of Zc(3900)

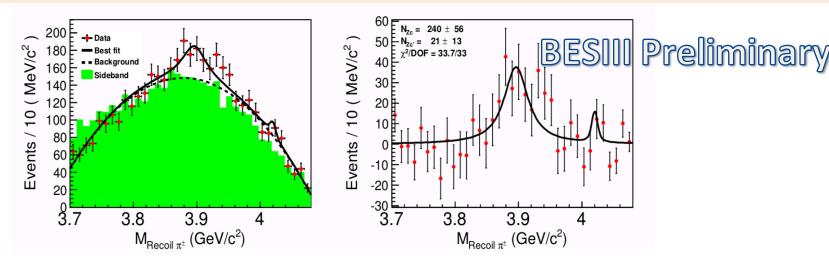
• Zc is parameterized with Flatte formula


$$BW(s, M, g'_1, g'_2) = \frac{1}{s - M^2 + i[g'_1\rho_1(s) + g'_2\rho_2(s)]}$$

• M=(3901.5±2.7±38.0)MeV, g<sub>1</sub>'=(0.075±0.006±0.025)GeV<sup>2</sup>, g<sub>2</sub>'/g<sub>1</sub>'=27.1±2.0±1.9

Which corresponding to pole Mass=  $(3881.2 \pm 4.2 \pm 52.7)$ MeV, pole width= $(51.8 \pm 4.6 \pm 36.0)$ MeV

- **J**<sup>p</sup> of **Zc favor to be 1**<sup>+</sup> with statistical significance larger than7σ over other quantum numbers
- The significance of Zc(4020) process is found to be  $3\sigma$


Search for  $e^+e^- \rightarrow \pi Z_c^{(\prime)}, Z_c^{(\prime)} \rightarrow \rho^{\pm}\eta_c$ 



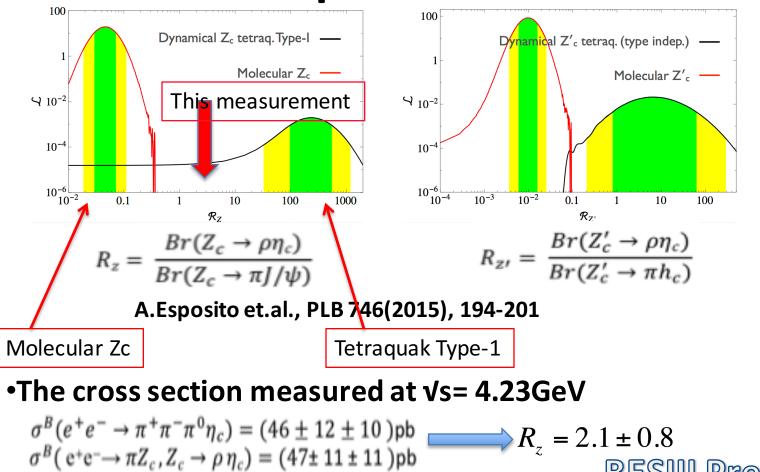
This channel is important for the discrimination between different multi-quark schemes.

The green band and yellow band show the 1σ and 2σ confidence range of the corresponding theoretical model.

Search for  $e^+e^- \rightarrow \pi Z_c^{(\prime)}, Z_c^{(\prime)} \rightarrow \rho^{\pm}\eta_c$ 



 $e^+e^- \rightarrow \pi Z_c$ ,  $Z_c \rightarrow \rho \eta_c @ 4.23 \text{ GeV}$ 

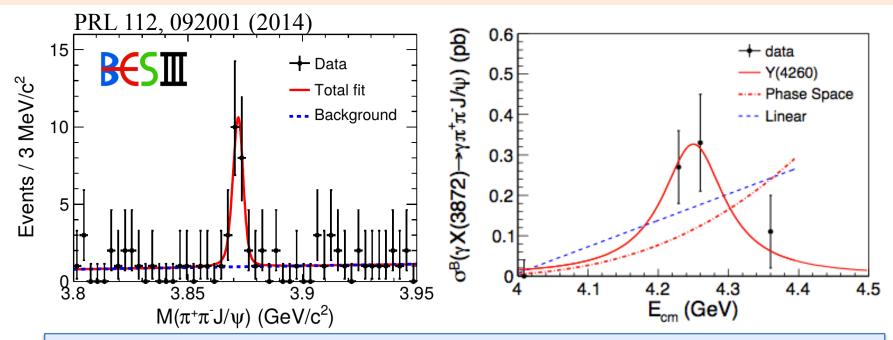

**D**Nine  $\eta_c$  channels are used to reconstruct  $\eta_c$ .

 $\Box$  After the  $\eta_c$  and  $\rho$  mass window, a hint of  $Z_c(3900)$  peak can be seen on the recoiled mass of the bachelor  $\pi$ .

**The green histogram is**  $\eta_c$  sideband.  $Z_c$  parameter are fixed to latest measurement.

□Strong evidence of Zc(3900)  $\rightarrow \rho \eta_c$  is observed at Vs=4.23GeV, with statistical significance 4.3 $\sigma$ (3.9 $\sigma$  including systematic uncertainty) □No significant Zc'(4020) $\rightarrow \rho \eta_c$  observed.

# Comparison between measurement and prediction



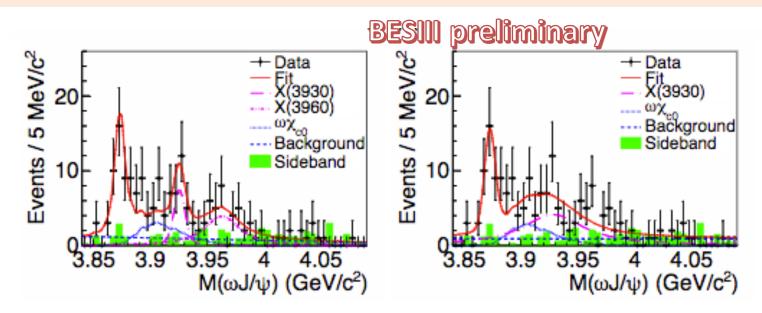

•Our measurement doesn't agree with both molecular Zc and tetraquark Zc Type-1 assumptions

#### Part III: X states



e<sup>+</sup>e<sup>-</sup> $\rightarrow$ γX(3872), X(3872) $\rightarrow$ π<sup>+</sup>π<sup>-</sup>J/ψ



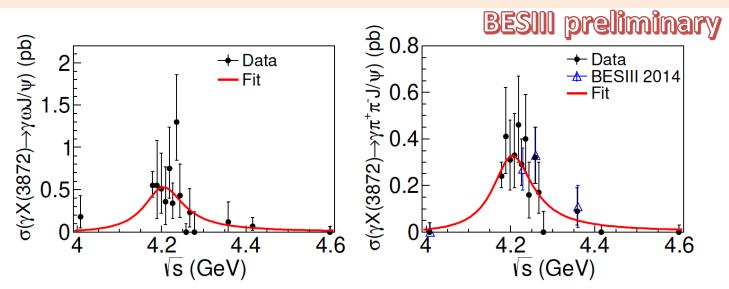

 $\Box X(3872)$  is sitting at the threshold of DD\*.

□ J<sup>PC</sup>=1<sup>++</sup> (*CDF*, *LHCb*)

 $\Box X(3872)$  is candidate of exotic states for long time: molecular states, tetraquark states, Mixture of excited  $\chi_{c1}$  and D<sup>0</sup>D<sup>\*0</sup> bound state.

□BESIII observed  $e^+e^- \rightarrow \gamma X(3872)$ ,  $X(3872) \rightarrow \pi^+\pi J/\psi$ . □ $e^+e^- \rightarrow \gamma X(3872) \rightarrow$  Charge parity of X(3872)=+1. □It seems that X(3872) is from the radiative transition of Y(4260)

 $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \omega J/\psi$ 




(1). Fit with X(3872), X(3915) and X(3960)(2). Fit with X(3872) and X(3915)

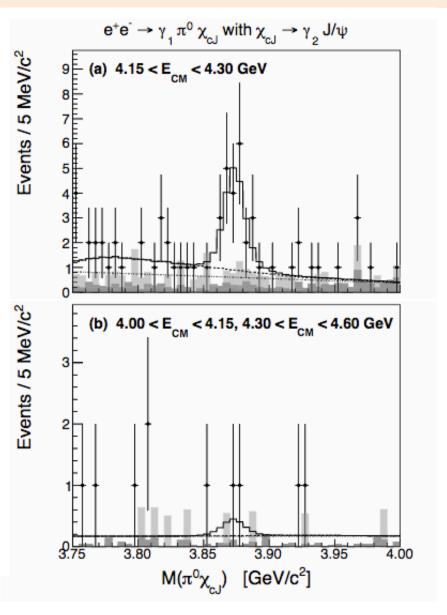
M[X(3872)]=  $3873.3 \pm 1.1 \pm 1.0 \text{ MeV}/c^2$ 

X(3872) signal significance >5.1 $\sigma$ , including systematic errors

# $Y \rightarrow \gamma X(3872) \rightarrow \gamma \omega J/\psi$



(1). Cross section measurement of  $e^+e^- \rightarrow \gamma X(3872)$  for (left)  $\omega J/\psi$  and (right)  $\pi^+\pi^- J/\psi$  channel


(2). Simultaneous fit to the cross section with a single Breit-Wigner resonance

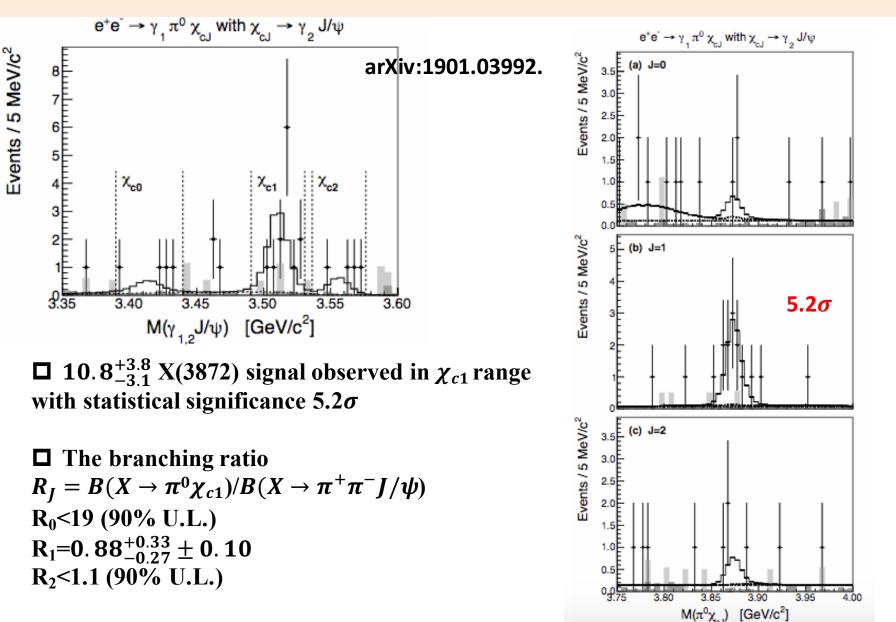
$$M[Y(4200)] = 4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^{2}$$
  

$$\Gamma[Y(4200)] = 115^{+38}_{-26} \pm 12 \text{ MeV}$$
  

$$\mathcal{R} = \frac{\mathcal{B}[X(3872) \to \omega J/\psi]}{\mathcal{B}[X(3872) \to \pi^{+}\pi^{-}J/\psi]} = 1.6^{+0.4}_{-0.3} \pm 0.2$$

# Observation of X(3872) $\rightarrow \pi^0 \chi_{c1}(1P)$




arXiv:1901.03992.

Data sets used:
 9.0fb<sup>-1</sup> for 4.15<E<sub>cm</sub><4.30 GeV</li>
 0.7fb<sup>-1</sup> for 4.00<E<sub>cm</sub><4.15 GeV</li>
 2.8fb<sup>-1</sup> for 4.30<E<sub>cm</sub><4.60 GeV</li>

□ With in range of 4.15< $E_{cm}$ <4.30 GeV For the sum of events in all the three  $\chi_{cJ}$ range, a clear X(3872) signal is seen with events number=16. 9<sup>+5.2</sup><sub>-4.5</sub>, and Significance= 4.8 $\sigma$ 

**D** No evidence of X(3872) in other E<sub>cm</sub>

## Observation of X(3872) $\rightarrow \pi^0 \chi_{c1}(1P)$



#### **Comparison between experiment and theory**

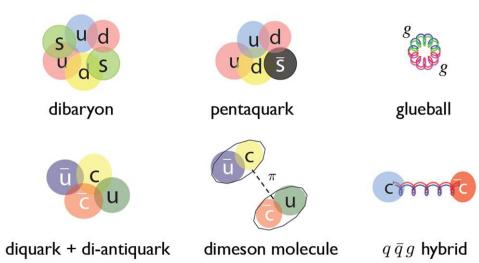
□ Using  $Br(X(3872) \rightarrow \pi^+\pi^- J/\psi) > 3.2\%$  (*PDG*) And  $Br(X(3872) \rightarrow \pi^+\pi^- J/\psi) < 6.4\%$ We get

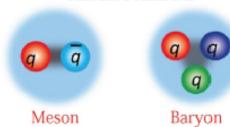
$$Br(X(3872) \rightarrow \pi^0 \chi_{cJ}) \sim 3 - 6\%$$

□ If X(3872) were the  $\chi_{c1}(2p)$  state of charmonium, then From the estimation of [Dubynskiy, Voloshin, PRD 77, 014013 (2008)],  $\Gamma(X(3872) \rightarrow \pi^0 \chi_{cJ}) \sim 0.06 KeV$ Which would imply an unrealistically small  $\Gamma_{TOT}(X(3872)) \sim 0.5 - 1 KeV$ 

**\Box** So this measurement disfavor the  $\chi_{c1}(2p)$  interpretation of the X(3872).

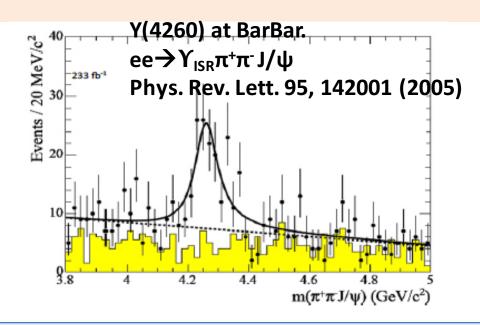
#### Summary


- > The Y(4260) Y(4220) are measured to be lower and narrower than previous PDG value with  $\pi^+\pi J/\psi(\psi')$ ,  $\pi^+\pi$ h<sub>c</sub>,  $\omega\chi_{cJ}$  and  $\pi^+D^0D^{*-}$
- $\succ \sigma(e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-)$  near threshold doesn't agree with Belle
- > The J<sup>p</sup> of  $Z_c^{\pm}(3900)$  are determined to be 1<sup>+</sup>
- > Evidence for a new decay mode of  $Z_c^{\pm}(3900) \rightarrow \rho^{\pm} \eta_c$
- ≻ A new decay mode of X(3872) →  $\pi^0 \chi_{c1}(1P)$  is observed
- More data from BESIII is on the way, and also plan to take data above 4.6GeV. More new result can be expected.
  <sup>32</sup>


#### Backup

#### What's the exotic states

 The normal states from standard quark model meson(qq), baryon(qqq)
 Standard Hadrons


- The QCD allow the existence of exotic states:
- ✓ Glueball (gg, ggg...)
- ✓ Multi-quark states (qqqq, qqqqq...)
- Molecular states
  - (Bound states of normal hadrons)
- Hybrid (qqg)

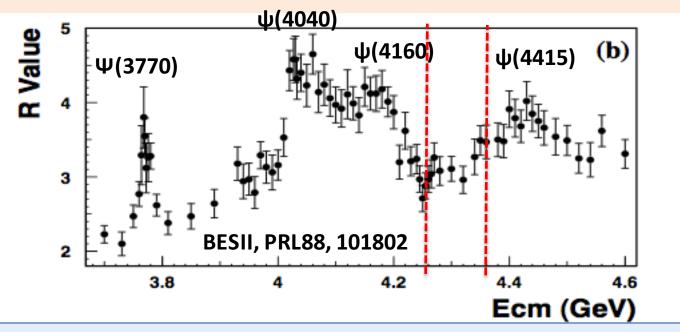




#### The exotics with Y(1<sup>--</sup>) states






□Y(4260), Y(4360) are not predicted by the Potential theory:

"Y" are observed in the ISR process, they should be 1<sup>--</sup> states.

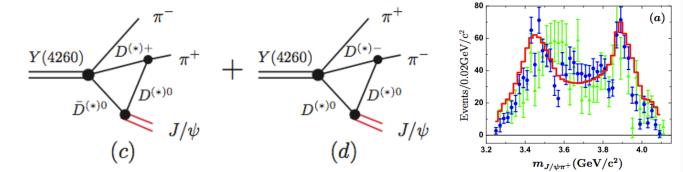
All the predicted 1<sup>--</sup> charmonium are already discovered ( $\psi$ (4040),  $\psi$ (4160),  $\psi$ (4415).

 $\rightarrow$  No place for Y(4260), Y(4360). Some of them might not be charmonium.

#### The exotics with Y(1<sup>--</sup>) states



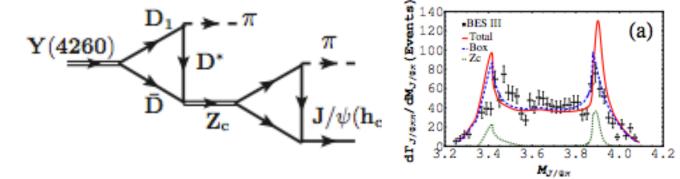
 $\Box$ Y(4260), Y(4360) doesn't correspond to a peak in R scan spectrum.  $\Box$ Y(4260) has much smaller coupling to open charm compare with observed  $\psi$ .


| $\Gamma(D\overline{D})/\Gamma(J/\psi\pi^+\pi^-)$ | -)  | Y(4260) PDG         |           |                      | $\Gamma_{23}/\Gamma_2$ |
|--------------------------------------------------|-----|---------------------|-----------|----------------------|------------------------|
| VALUE                                            | CL% | DOCUMENT ID         | TECN      | COMMENT              |                        |
| <1.0                                             | 90  | <sup>1</sup> AUBERT | 07BE BABR | $e^+e^- \rightarrow$ | $D\overline{D}\gamma$  |

For  $\psi(3770)$ ,  $\Gamma(DD)/\Gamma(\pi^+\pi^-J/\psi) \approx 500$ 

See Jianming Bian's report at May 20 for the BES work about Y states.

### Other explanation of Zc(3900)


□ ISPE(Initial single pion emission) model. (arxiv : 1304.5845)



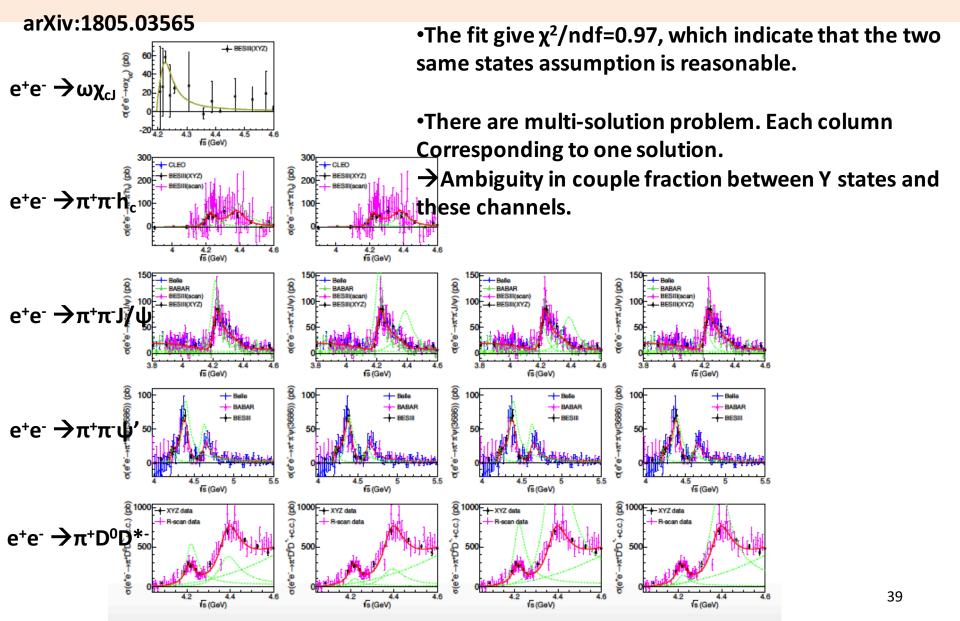
□ Meson loop model. (Arxiv : 1303.6355)

Based on the assumption that Y(4260) is (DD1) molecular

states



### **Coupled channels fit**


• The Y states in these channels

|                                | Y(4220)                        |                               | Y(4320)/Y(4360)/Y(4390)        |                                  |
|--------------------------------|--------------------------------|-------------------------------|--------------------------------|----------------------------------|
|                                | $M \; ({ m MeV}/c^2)$          | $\Gamma$ (MeV)                | $M ({ m MeV}/c^2)$             | $\Gamma (MeV)$                   |
| $\omega \chi_{c0}$ [13]        | $4226 \pm 8 \pm 6$             | $39 \pm 12 \pm 2$             |                                |                                  |
| $\pi^{+}\pi^{-}h_{c}$ [14]     | $4218.4^{+5.5}_{-4.5} \pm 0.9$ | $66.0^{+12.3}_{-8.3} \pm 0.4$ | $4391.5^{+6.3}_{-6.8} \pm 1.0$ | $139.5^{+16.2}_{-20.6} \pm 0.6$  |
| $\pi^{+}\pi^{-}J/\psi$ [7]     | $4222.0 \pm 3.1 \pm 1.4$       | $44.1 \pm 4.3 \pm 2.0$        | $4320.0 \pm 10.4 \pm 7.0$      | $101.4^{+25.3}_{-19.7} \pm 10.2$ |
| $\pi^+\pi^-\psi(3686)$ [11]    | $4209.1 \pm 6.8 \pm 7.0$       | $76.6 \pm 14.2 \pm 2.4$       | $4383.7 \pm 2.9 \pm 6.2$       | $94.2 \pm 7.3 \pm 2.0$           |
| $\pi^+ D^0 D^{*-} + c.c.$ [15] | $4224.8 \pm 5.6 \pm 4.0$       | $72.3\pm9.1\pm0.9$            | $4400.1 \pm 9.3 \pm 2.1$       | $181.7 \pm 16.9 \pm 7.4$         |

- Assume these two peaks structure are from same two states.
- Fit theses cross sections simultaneously with the interference between the Y states considered
- The result from CLEO, BaBar, Belle are also used
- The fit result gives:

| Parameter              | Y(4220)                  | Y(4390)                  | Y(4660)                    |
|------------------------|--------------------------|--------------------------|----------------------------|
| $M \; ({\rm MeV}/c^2)$ | $4216.5 \pm 1.4 \pm 3.2$ | $4383.5 \pm 1.9 \pm 6.0$ | $4623.4 \pm 10.5 \pm 16.1$ |
| $\Gamma (MeV)$         | $61.1 \pm 2.3 \pm 3.1$   | $114.5\pm5.4\pm9.9$      | $106.1 \pm 16.2 \pm 17.5$  |

### **Coupled channels fit**

