

XYZ at LHCb

Outline

- Overview on exotic hadrons
- The LHCb detector
- Recent results
 - Search for beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant-mass spectrum
 - Evidence for an $\eta_c(1S)\pi^-$ resonance in $B^0 \to \eta_c(1S)K^+\pi^-$ decays
 - Model-independent observation of exotic contributions to $B^0\!\!\to J/\psi K^+\pi^-$ decays
- Summary

Exotic hadrons

Volume 8, number 3 PHYSICS LETTERS 1 February 196

- Quark model was postulated by M. Gell-Mann and G. Zweig in 1964
 Phys.Lett. 8 (1964) 214, CERN-TH-412
- A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN

California Institute of Technology, Pasadena, California

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqq \bar{q}), etc., while mesons are made out of (q \bar{q}), (qq \bar{q} \bar{q}), etc. It is assuming that the lowes

- Conventional mesons $q\bar{q}$ and baryons qqq
- Exotic hadrons beyond conventional
- Could be various multiquark states, hadron molecules, glueballs, hybrids...
- First charmonium-like state seen by Belle in 2003 PRL 91 (2003) 262001

VOLUME 91, NUMBER 26

PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2003

Observation of a Narrow Charmoniumlike State in Exclusive $B^\pm \to K^\pm \pi^+ \pi^- J/\psi$ Decays

- $B^{\pm} \rightarrow X(3872)K^{\pm}$ $X(3872) \rightarrow J/\psi \pi^{+} \pi^{-}$
- Even after 15 years nature of this state is still under discussion
- Since then more than 20 new exotics states were found

FIG. 2: Signal-band projections of (a) $M_{\rm bc}$, (b) $M_{\pi^+\pi^- J/\psi}$ and (c) ΔE for the $X(3872) \rightarrow \pi^+\pi^- J/\psi$ signal region with the results of the unbinned fit superimposed.

Exotic hadrons

Charmonium-like states

Commonly used nomenclature

- X neutral, first seen in B-decays, positive parity
- Y neutral, first seen the Initial State
 Radiation (ISR) processes, negative parity
- Z charged (and their isospin partners)
- P pentaquarks

Many theoretical interpretations in discussion

Diquarkonium

Meson molecules

Hadroquarkonium

Quarkonium adjoint meson

Further search for new exotic hadrons and determine their properties

The LHCb detector

Details are given in the talk by Pavel Krokovny

- VELO: impact parameter resolution $(15 + 29/p_T[GeV/c]) \mu m$, decay time resolution ~45 fs
- Tracking stations, Magnet: momentum resolution $\Delta p/p = 0.4 \%$ at 5 GeV/c, 1.0 % at 200 GeV/c
- PID efficiency: for $e^- \sim 90\%$ with 5% $e \rightarrow h$ misID, for K $\sim 95\%$ with 5% $\pi \rightarrow$ K misID, for $\mu \sim 97\%$ with 1-3% $\pi \rightarrow \mu$ misID
- Calorimetric system: ECAL resolution ~1% \oplus 9%/ $\sqrt{E[GeV]}$, HCAL resolution ~9% \oplus 69%/ $\sqrt{E[GeV]}$

Search for exotics with LHCb

Exotic hadrons studies at LHCb

 in weak b-hadron decays: low combinatorial background low signal yield

in prompt pp-production:
 large combinatorial background
 access to a high mass region

Tools

- angular distributions, Dalitz and Argand plots
- amplitude analysis, model independent approach

Highlights from LHCb

- X(3872)
 - production studies EPJ C72 (2012) 1972
 - J^{PC} determination PRL 110 (2013) 222001
 - observation of radiative decays Nucl.Phys. B886 (2013) 665

• Z(4430)⁺ confirmation of resonance nature PRL 112 (2014) 222002, PRD 92 (2015) 112009

- P_c(4380)⁺ and P_c(4450)⁺ observation
 PRL 115 (2015) 072001, PRL 117 (2016) 082002
- Four resonance states in $J/\psi\phi$ -system in $B^+ \rightarrow J/\psi\phi K^+$, including confirmation of X(4140) and X(4274) PRL 118 (2017) 022003, PRD 95 (2017) 012002

PRL 115 (2015) 072001

Search for beautiful tetraquarks

JHEP 10 (2018) 086

Motivation

- No hadron containing more than two heavy quarks has been observed so far
- Theoretical predictions for $X_{b\bar{b}b\bar{b}}$:
 - Mass within [18.4; 18.8] GeV/c^2
 - Mass typically below $\eta_b \eta_b$ threshold, therefore decay to $\Upsilon l^+ l^- (l = e, \mu)$
 - Cross-section $\sigma(pp \to X_{b\bar{b}b\bar{b}}^-) \times Br(X_{b\bar{b}b\bar{b}}^- \to 2l^+ 2l^-) \sim 1 \text{fb}$ FERMILAB-PUB-17-395-T
- Lattice QCD calculations do not find any evidence of this state

Analysis strategy

- Search in $\Upsilon(1S)[\rightarrow \mu^{+}\mu^{-}]\mu^{+}\mu^{-}$ spectra
- Normalization decay: $\Upsilon(1S) \rightarrow \mu^{+}\mu^{-}$
- Data of 6.3 fb⁻¹ collected in
 - 2011@7TeV,
 - 2012@8TeV,
 - 2015-2017@13TeV

Search for beautiful tetraquarks

JHEP 10 (2018) 086

- Cut-based selection
- J/ ψ mass veto: $m(\mu^{+}\mu^{-}) \notin [3050; 3150] \text{ MeV/c}^{2}$
- $X_{b\bar{b}b\bar{b}}$ searched in mass range [17.5; 20] GeV/c²
- Fiducial region: $p_T(\mu^{\pm}) < 30 \text{ GeV/c}, 2.0 < y < 4.5$

No significant excess is seen in data, therefore upper limit is set for:

$$S = \sigma(pp \to X) \times Br(X \to \Upsilon(1S)\mu^{+}\mu^{-}) \times Br(\Upsilon(1S) \to \mu^{+}\mu^{-})$$

• $\sigma(X_{bbbb}^{--}) \sim 60-70 \text{ MeV/c}^2$, multiplied by a scaling factor taken from simulation

1.55 E LHCb Simulation b[×] 1.53 1.52 1.511.5 E $\sigma_X = k(\mu_X) \times \sigma_{\Upsilon(1S)}$ 1.49 $k(\mu_X) = p_0 + p_1(\mu_X - 18690MeV/c^2)$ 1.48 18700 18500 18600 18800 μ_{v} [MeV/ c^2] Likelihood profile as a function of S is integrated to determine upper limits

8 / 16

$\eta_c\pi^-$ resonance in $B^0\to\eta_c K^+\pi^-$ decays

Eur.Phys.J. C78 (2018) 1019

Motivation

- Important input for understanding nature of exotic hadrons, in particular of $Z_c(3900)^-$ state discovered in $J/\psi\pi^-$ system by BESIII PRL 111 (2013) 242001
 - $Z_c(3900)^-$ as analogue of quarkonium hybrids $\to \eta_c \pi^-$ resonance $J^P = 0^+, 1^-, 2^+$ (based on lattice QCD) <u>PRL 111 (2013) 162003</u>
 - $Z_c(3900)^-$ as hadrocharmonium $\to \eta_c \pi^-$ resonance $m = 3800~MeV/c^2$ PRD 87 (2013) 091501
- Diquark model $\to \eta_c \pi^-$ resonance below the open-charm threshold $J^P = 0^+$ PRD 71 (2005) 014028

therefore, search for an $\eta_c \pi^-$ resonance in $B^0 \to \eta_c K^+ \pi^-$ decays

$\eta_c \pi^-$ resonance in $B^0 \to \eta_c K^+ \pi^-$ decays

Eur.Phys.J. C78 (2018) 1019

- Reconstruction using $\eta_c \,{\to}\, p\bar{p}$ mode
- Normalization decay: $B^0 \rightarrow J/\psi[\rightarrow p\bar{p}]K^+\pi^-$
- Reconstruction and selection efficiencies largely cancel in the ratio

- Data of 4.7fb⁻¹ collected in
 - 2011@7TeV,
 - 2012@8TeV,
 - 2016@13TeV

Branching fraction

$$\mathcal{B}(B^0 \to \eta_c K^+ \pi^-) = (5.73 \pm 0.24 (stat) \pm 0.13 (syst) \pm 0.66) \times 10^{-4}$$

Dominant uncertainty from external branching fractions

$\eta_c\pi^-$ resonance in $B^0\to\eta_c K^+\pi^-$ decays

Eur.Phys.J. C78 (2018) 1019

2D fit $m(p\bar{p}K^+\pi^-)-m(p\bar{p})$ for Run-I and Run-II

Dalitz plot analysis

- Fit model: signal + non-resonant + combinatorial
- Decay amplitude: sum of resonant $K^+\pi^-$ + non-resonant processes
- Six K*0 resonances give significant contributions
- Exotic $Z_c(4100)^- \rightarrow \eta_c \pi^-$ contribution added to improve the fit

$\eta_c\pi^-$ resonance in $B^0\to\eta_cK^+\pi^-$ decays

Eur.Phys.J. C78 (2018) 1019

$K^+\pi^-$ only contributions

$K^+\pi^-$ and $\eta_c\pi^-$ contributions

- Good description is achieved by adding an exotic $Z_c(4100)^- \to \eta_c \pi^-$ component
- Evidence for exotic $Z_c(4100)^-$ resonance $(3.4\sigma \text{ significance considering systematics})$
- Both $J^P = 0^+$ and $J^P = 1^-$ are consistent with the data
- $M = 4096 \pm 20^{+18}_{-22} \text{ MeV/c}^2$, $\Gamma = 152 \pm 58^{+60}_{-35} \text{ MeV}$
- Quasi-two-body branching fraction:

$$\mathcal{B}(B^0 \to Z_c(4100)^- K^+, Z_c(4100)^- \to \eta_c \pi^+) = (1.89 \pm 0.64^{+0.73}_{-0.67}) \times 10^{-5}$$

Exotic contributions to $B^0 \rightarrow J/\psi K^+\pi^-$

Motivation

Submitted to PRL arXiv:1901.05745

- $Z_c(4430)^-$ state discovered by Belle in $Z_c(4430)^- \to \psi(2S)\pi^-$ PRL 100 (2008) 142001
 - not confirmed by BaBar PRD 79 (2009) 112001
 - confirmed by LHCb PRL 112 (2014) 222002
- $Z_c(4430)^- \rightarrow J/\psi \pi^-$ not yet confirmed
 - Belle find evidence for $Z_c(4430)^- \to J/\psi\pi^-$ in $B^0 \to J/\psi K^+\pi^-$, and also observed a new state $Z_c(4200)^- \to J/\psi\pi^-$ PRD 90 (2014) 112009

Analysis strategy

- Large statistics of ~ 5×10^5 events allow independent fits in bins over m(K⁺ π ⁻)
- Purity > 90% in all m(K⁺ π ⁻) bins

- Poor knowledge of the conventional K^{*0} spectrum
- To bypass the problem the model-independent approach only requiring knowledge of the J_{max} (highest spin of $K^{\ast0}$ contributions) is used

Exotic contributions to $B^0 \rightarrow J/\psi K^+\pi^-$

Submitted to PRL arXiv:1901.05745

- Kinematic variables: $m(K^+\pi^-)$, χ , θ_l , θ_V
- 3D angular fits in bins of $m(K^+\pi^-)$
- Fit model includes only K^{*0} contributions with allowed J up to J_{max}
- Fine $m(K^+\pi^-)$ binning: conclusion is independent of K^{*0} line shapes

Region dominated by the K*(892)⁰

Outside K*(892)⁰ region

Need unphysical J_{max}=15 to describe data.

Exotic contributions to $B^0 \rightarrow J/\psi K^+\pi^-$

Submitted to PRL arXiv:1901.05745

• The likelihood ratio test demonstrates that data reject K^{*0} only hypothesis with 10σ significance

Dalitz plot for background-subtracted data

Some structure at $m(J/\psi\pi^-) \approx 4600 \text{ MeV/c}^2$

Indications of the $Z(4200)^-$ seen by Belle

The nature of the non- K^{*0} contributions can be investigated with a future amplitude analysis

Conclusion

- The LHCb experiment provides a significant contribution to the knowledge of exotic hadron spectroscopy:
 - Search for beautiful tetraquarks $X_{b\bar{b}b\bar{b}}^- \to \Upsilon(1S)\mu^+\mu^-$, upper limit is set
 - Evidence for an $\eta_c(1S)\pi^-$ resonance in $B^0\!\!\to\eta_c(1S)K^+\pi^-$ decays
 - Model-independent observation of exotic contributions to $B^0\!\!\to J/\psi K^+\pi^-$ decays
- The analyses presented are based on only part of Run-II data
- Looking forward for new results from analyses of 9 fb⁻¹ of full Run-I and Run-II data sample!

For the recent charm and charmonium results from LHCb see further talks by Ivan Belyaev and Alexey Dzyuba