Leptonic decays of the au lepton

Matteo Fael

1 Mar 2019 – PhiPsi19 – BINP Novosibirsk

$$\begin{split} \tau &\to \ell \nu \bar{\nu} \\ \tau &\to \ell \nu \bar{\nu} + \gamma \\ \tau &\to \ell \nu \bar{\nu} + \ell' \ell' \end{split}$$

 $\mathcal{L} = -rac{4G_0}{\sqrt{2}} \quad \sum \quad g^{\gamma}_{arepsilon\omega} \left(ar{\ell}_{\epsilon} \Gamma^{\gamma}
u_{\ell}
ight) \left(ar{
u}_{ au} \Gamma_{\gamma} au_{\omega}
ight)$ $\gamma = S, V, T$ $\epsilon, \omega = R, L$

• $\tau \rightarrow \ell \nu \bar{\nu}$ Michel, Proc. Phys. Soc. A63 (1950) 514; Bouchiat, Michel, PR 106(1957) 170; Kinoshita, Sirlin, PR 107(1957) 593; Kinoshita, Sirlin, PR 108(1957) 844.

• $\tau \to \ell \gamma \nu \bar{\nu}$

Arbuzov, Kopylova, JHEP 1609 (2016) 109;

• $\tau \to \ell \ell' \ell' \nu \bar{\nu}$

Flores-Tlalpa, Lopez Castro, Roig, JHEP 1604 (2016) 185

R =	$\frac{\Gamma(\tau \to e\nu\bar{\nu})}{\Gamma(\tau \to \mu\nu\bar{\nu})}$
$R_\gamma =$	$\frac{\Gamma(\tau \to e \gamma \nu \bar{\nu})}{\Gamma(\tau \to \mu \gamma \nu \bar{\nu})}$
$R_{ee} =$	$\frac{\Gamma(\tau \to e e e \nu \bar{\nu})}{\Gamma(\tau \to \mu e e \nu \bar{\nu})}$
$R_{\mu\mu} =$	$\frac{\Gamma(\tau \to e\mu\mu\nu\bar{\nu})}{\Gamma(\tau \to \mu\mu\mu\bar{\nu})}$

$$\mathcal{L}_{\mathrm{eff}} = rac{1}{\Lambda^2} \left[\mathcal{C}_{IW} \mathcal{O}_{IW} + \mathcal{C}_{IB} \mathcal{O}_{IB} + \mathrm{h.c.}
ight]$$

Grzadkowski, Iskrzynski, Misiak, Rosiek, JHEP 1010 (2010) 085.

Dipole Moments:

$$\begin{split} \tilde{a}_{\tau} &= \frac{2m_{\tau}}{2} \frac{\sqrt{2}v}{\Lambda^2} \mathrm{Re} \left[\cos \theta_W C_{IB} - \sin \theta_W C_{IW} \right] \\ \tilde{d}_{\tau} &= \frac{\sqrt{2}v}{\Lambda^2} \mathrm{Im} \left[\cos \theta_W C_{IB} - \sin \theta_W C_{IW} \right] \end{split}$$

Eidelman, Epifanov, MF, Mercolli, Passera, JHEP 1603 (2016) 140.

$$\mathcal{L}_{\mathrm{eff}} = rac{1}{\Lambda^2} \left[\mathcal{C}_{IW} \mathcal{O}_{IW} + \mathcal{C}_{IB} \mathcal{O}_{IB} + \mathrm{h.c.}
ight]$$

Grzadkowski, Iskrzynski, Misiak, Rosiek, JHEP 1010 (2010) 085.

Dipole Moments:

$$\tilde{a}_{\tau} = \frac{2m_{\tau}}{2} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re}\left[\cos\theta_W C_{IB} - \sin\theta_W C_{IW}\right]$$
$$\tilde{d}_{\tau} = \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Im}\left[\cos\theta_W C_{IB} - \sin\theta_W C_{IW}\right]$$

Eidelman, Epifanov, MF, Mercolli, Passera, JHEP 1603 (2016) 140.

MonteCarlo @ NLO

- $\tau \to \ell \nu \bar{\nu}$:
 - Decay spectrum: Kinoshita and Sirlin, Phys. Rev. 113 (1959) 1652.
 - TAUOLA:

M. Jezabek, Z. Was, S. Jadach, J. Kuhn, Comput. Phys. Commun. 70 (1992) 69.

- $\tau \to \ell \nu \bar{\nu} + \gamma$:
 - Polarized *τ*, lepton-photon spectrum, IR with photon mass:
 L. Mercolli, MF, M. Passera, JHEP 1507 (2015) 153.
 - Polarized τ , fully differential, IR with FKS subtraction:

M. Pruna, A. Signer, Y. Ulrich, Phys.Lett. B772 (2017) 452.

- Also:
 - A. Fischer, T. Kurosu and F. Savatier, Phys. Rev. D 49, 3426;
 - A.B. Arbuzov, E.S. Scherbakova, Phys.Lett. B597 (2004) 285.

MonteCarlo @ NLO

- $\tau \rightarrow \ell \nu \bar{\nu} + \ell' \ell'$ @ LO
 - D. Yu. Bardin, T. G. Istatkov, and G. Mitselmakher, Sov.J.Nucl.Phys. 15 (1972) 161
 - P. M. Fishbane and K. J. F. Gaemers, PRD 33 (1986) 159
 - R. M. Djilkibaev and R. V. Konoplich, PRD 79 (2009) 073004
 - Flores-Tlalpa, Lopez Castro, Roig JHEP 1604 (2016) 185
 - Arroyo-Urena, Diaz, Meza-Aldama, Tavares-Velasco, Int.J.Mod.Phys. A32 (2017) 1750195
- Analytic LO Branching Ratio in the $m_e
 ightarrow 0$ limit:
 - van Ritbergen, Stuart, NPB 564 (2000) 343
- $\tau \rightarrow \ell \nu \bar{\nu} + \ell' \ell'$ @ NLO:

Original papers focus only on muon's rare decay:

- C. Greub & MF, JHEP 1701 (2017) 084.
- M. Pruna, A. Signer, Y. Ulrich, Phys.Lett. B765 (2017) 280.

Technical Ingredients

$$\mathcal{L} = \mathcal{L}_{\text{QED}} + \mathcal{L}_{\text{QCD}} - \frac{4G_F}{\sqrt{2}} \left(\bar{\psi}_{\nu_{\mu}} \gamma^{\mu} P_L \psi_{\mu} \right) \left(\bar{\psi}_e \gamma_{\mu} P_L \psi_{\nu_e} \right) + \text{h.c.}$$

- virtual: 8 diagrams
- real: 6 diagrams

- virtual: 22 diagrams + 2 had.
- real: 10 diagrams

(everything $\times 2$ if $\ell = \ell'$).

M. Fael PhiPsi19 1 Mar. 2019

The Montecarlo code:

- Full dependence on m_e, m_{μ} .
- FORM calculates and simplifies tree-level and one-loop diagrams
- LoopTools and Collier evaluates one-loop tensor coefficients. T. Hahn, M. Perez-Victoria, Comput.Phys.Commun. 118 (1999) 153; A. Denner, S. Dittmaier,L. Hofer, Comput.Phys.Commun. 212 (2017) 220.
- Very good numerical stability with Collier for $\tau \to e e e \nu \bar{\nu}$.
- Π^{had}(t) and R^{had}(z) provided by Jegerlehner's package alphaQED:
 www-com.physik.hu-berlin.de/~fjeger/alphaQEDc17.tar.gz

Real emission: IR regularization

• QED dipole subtraction: Catani, Seymour, Phys.Lett. B378 (1996) 287; S. Dittmaier, Nucl.Phys. B565 (2000) 69.

$$\int d\phi_{n+1} |\mathcal{M}_{\mathsf{real}}|^2 = \int d\phi_{n+1} \left(|\mathcal{M}_{\mathsf{real}}|^2 - |\mathcal{M}_{\mathsf{sub}}|^2 \right) + \int d\phi_n d^3k |\mathcal{M}_{\mathsf{sub}}|^2$$

where

$$|\mathcal{M}_{\mathsf{sub}}|^2 = \sum_{i \neq j} g_{ij}(p_i, p_j, k) |\mathcal{M}_{\mathsf{Born}}|^2$$

 $au o \ell
u ar
u \gamma$

	$ au ightarrow e ar{ u} u \gamma$	$\tau \to \mu \bar{\nu} \nu \gamma$
\mathcal{B}_{LO}	$1.834 imes 10^{-2}$	3.663×10^{-3}
$\mathcal{B}_{ ext{nlo}}^{ ext{Inc}}$	$1.728(10)_{ m th}(3)_ au imes 10^{-2}$	$3.605(2)_{ m th}(6)_ au imes 10^{-3}$
$\mathcal{B}_{_{ m NLO}}^{ m Exc}$	$1.645(19)_{ m th}(3)_ au imes 10^{-2}$	$3.572(3)_{ m th}(6)_ au imes 10^{-3}$
K (Inc)	0.94	0.98
K (Exc)	0.90	0.97
Babar [†] Belle*	$\begin{array}{c} (1.847\pm 0.015\pm 0.052)\times 10^{-2} \\ (1.79\pm 0.02\pm 0.10)\times 10^{-2} \end{array}$	$egin{aligned} (3.69\pm0.03\pm0.10) imes10^{-3}\ (3.63\pm0.02\pm0.15) imes10^{-3} \end{aligned}$

† BABAR - PRD 91 (2015) 051103

*N. Shimizu - Belle - PTEP 2018 (2018) 023C01

- $E_{\gamma} \geq 10 \text{ MeV}$
- Exclusive BR: n = 1 photon
- Inclusive BR: $n \ge 1$ photons

See also: L. Mercolli, MF, M. Passera JHEP 1507 (2015) 153

Acceptance cuts $\tau \rightarrow e \nu \bar{\nu} \gamma$

$$\left\{ egin{array}{l} \cos heta_{e\gamma}^* > 0.97 \ 0.22 \, {
m GeV} \le E_\gamma^* \le 2.0 \, {
m GeV} \ M_{e\gamma} \ge 0.14 \, {
m GeV} \end{array}
ight.$$

PDG benchmark value

 $E_{\gamma}^{*} \geq 10\,\,{
m MeV}$

$$\mathcal{B}_{\mathrm{exp}} = \epsilon_{\mathrm{det}} \cdot \epsilon_{\mathrm{th}} \cdot \mathcal{N}_{\mathrm{obs}},$$

 \longrightarrow

- ϵ_{det} : detector efficiencies
- $\epsilon_{\rm th} = \Gamma^{\rm total} / \Gamma^{\rm with\, cuts}$

	$ au ightarrow e ar u u \gamma$	$ au o \mu \bar{\nu} \nu \gamma$
$\mathcal{B}_{ ext{LO}}$	$1.834(1) \cdot 10^{-2}$	$3.662(1) \cdot 10^{-3}$
\mathcal{B}^{excl}	$1.645(1)\cdot 10^{-2}$	$3.571(1) \cdot 10^{-3}$
${\cal B}^{{ m incl}}$	$1.727(3) \cdot 10^{-2}$	$3.604(1)\cdot 10^{-3}$
\mathcal{B}_{exp}	$1.847(54) \cdot 10^{-2}$	$3.69(10) \cdot 10^{-3}$
$\epsilon_{ m LO}^{ m th}$	48.55(1)	4.966(1)
$\epsilon_{ m NLO}^{ m th}$	44.80(1)	4.911(1)
$\epsilon' = \epsilon_{\rm NLO}/\epsilon_{\rm LO}$	0.923(1)	0.989(1)
$\epsilon'\cdot \mathcal{B}_{exp}$	$1.704(50) \cdot 10^{-2}$	$3.65(10) \cdot 10^{-3}$

M. Pruna, A. Signer, Y. Ulrich Phys.Lett. B772 (2017) 452

	$\mathcal{B}_{ m LO}$	$\delta \mathcal{B}_{ m NLO,QED}$	$\delta \mathcal{B}_{ m NLO,had}$	$\delta {\cal B}/{\cal B}$
$ au ightarrow {\it eee} u ar{ u}$	$4.2488(4) imes 10^{-5}$	$-4.2(1) imes 10^{-8}$	$-1.0 imes10^{-9}$	-0.1%
$ au o \mu {\it ee} u ar{ u}$	$1.9891(1) imes 10^{-5}$	$4.4\left(1 ight) imes10^{-8}$	$-6.6 imes10^{-10}$	0.2%
$ au ightarrow {f e} \mu \mu u ar{ u}$	$1.2513(6) imes 10^{-7}$	$2.70(1) imes 10^{-9}$	$-3.6 imes10^{-10}$	1.8%
$\tau \to \mu \mu \mu \nu \bar{\nu}$	$1.1837(1) imes 10^{-7}$	$2.276(2) imes 10^{-9}$	-3.5×10^{-10}	1.6%
$\mu \to e e e \nu \bar{\nu}$	$3.6054(1) imes 10^{-5}$	$-6.69(5) imes 10^{-8}$	-1.8×10^{-11}	0.2%

Tau lifetime uncertainty: $\delta au_{ au}/ au_{ au} = 1.7 imes 10^{-3}$

Shift of the fine structure constant: $\Delta \alpha (4m_{\mu}^2) = 6 \times 10^{-3}$

	$\mathcal{B}_{ m LO}$	$\delta \mathcal{B}_{ m NLO,QED}$	$\delta \mathcal{B}_{ m NLO,had}$	$\delta {\cal B}/{\cal B}$
$ au ightarrow {\it eee} u ar{ u}$	$4.2488(4) imes 10^{-5}$	$-4.2(1) imes 10^{-8}$	$-1.0 imes10^{-9}$	-0.1%
$\tau \to \mu \text{ee} \nu \bar{\nu}$	$1.9891(1) imes 10^{-5}$	$4.4\left(1 ight) imes10^{-8}$	$-6.6 imes10^{-10}$	0.2%
$ au o m{e} \mu \mu u ar{ u}$	$1.2513(6) imes 10^{-7}$	$2.70(1) imes 10^{-9}$	$-3.6 imes10^{-10}$	1.8%
$ au o \mu \mu \mu \nu \bar{ u}$	$1.1837(1) imes 10^{-7}$	$2.276(2) imes 10^{-9}$	$-3.5 imes10^{-10}$	1.6%
$\mu \to e e e \nu \bar{\nu}$	$3.6054(1) imes 10^{-5}$	$-6.69(5) imes 10^{-8}$	$-1.8 imes10^{-11}$	0.2%

Tau lifetime uncertainty: $\delta au_{ au}/ au_{ au} = 1.7 imes 10^{-3}$

Shift of the fine structure constant: $\Delta \alpha (4m_{\mu}^2) = 6 \times 10^{-3}$

	$\mathcal{B}_{ m LO}$	$\delta \mathcal{B}_{ m NLO,QED}$	$\delta \mathcal{B}_{ m NLO,had}$	$\delta {\cal B}/{\cal B}$
$ au ightarrow eee u ar{ u}$	$4.2488(4) imes 10^{-5}$	$-4.2(1) imes 10^{-8}$	$-1.0 imes10^{-9}$	-0.1%
$\tau \to \mu e e \nu \bar{\nu}$	$1.9891(1) imes 10^{-5}$	$4.4\left(1 ight) imes10^{-8}$	$-6.6 imes10^{-10}$	0.2%
$ au ightarrow m{e} \mu \mu u ar{ u}$	$1.2513(6) imes 10^{-7}$	$2.70(1) imes 10^{-9}$	$-3.6 imes10^{-10}$	1.8%
$\tau \to \mu \mu \mu \nu \bar{\nu}$	$1.1837(1) imes 10^{-7}$	$2.276(2) imes 10^{-9}$	-3.5×10^{-10}	1.6%
$\mu ightarrow {\it eee} u ar{ u}$	$3.6054(1) imes 10^{-5}$	$-6.69(5) imes 10^{-8}$	$-1.8 imes10^{-11}$	0.2%

 $\mathcal{B}_{
m exp}(\mu^- o e^+ e^- e^-
u_\mu ar{
u}_e) = 3.4 \, (4) imes 10^{-5}$ SINDRUM, NPB 260 (1985) 1. $egin{split} \mathcal{B}_{
m exp}(au o ee^-e^+
u ar{
u}) &= 2.8\,(1.5) imes 10^{-5} \ \mathcal{B}_{
m exp}(au o \mu e^-e^+
u ar{
u}) < 3.2 imes 10^{-5} \ {
m at 95\% \ CL} \end{split}$

CLEO, PRL 76 (1996) 2637.

Table 2: Summary of the signal detection efficiencies and background contaminations.

τ^- decay mode	$e^-e^+e^-\bar{\nu}_e\nu_{\tau}$	$\mu^- e^+ e^- ar{ u}_\mu u_ au$	$e^-\mu^+\mu^-\bar{\nu}_e\nu_{ au}$	$\mu^-\mu^+\mu^-ar{ u}_\mu u_ au$
Detection				
efficiency	$(1.769 \pm 0.004)\%$	$(1.204{\pm}0.003)\%$	$(3.561 \pm 0.006)\%$	$(1.674 \pm 0.004)\%$
Main	$e^-\bar{\nu}_e\nu_\tau\gamma$	$\mu^- \bar{ u}_\mu u_ au \gamma$	$\pi^-\pi^0 u_ au$	$\pi^{-}\pi^{0} u_{ au}$
backgrounds	$\rightarrow e^- \bar{\nu}_e \nu_\tau (e^+ e^-)$	$\rightarrow \mu^- \bar{\nu}_\mu \nu_\tau (e^+ e^-)$	$\rightarrow \pi^-(\gamma\gamma) u_{ au}$	$\rightarrow \pi^-(\gamma\gamma)\nu_{\tau}$
	$\pi^-\pi^0 u_ au$	$\pi^{-}\pi^{0} u_{ au}$	$\rightarrow \pi^-((e^+e^-)\gamma)\nu_{\tau}$	$\rightarrow \pi^-((e^+e^-)\gamma)\nu_{\tau}$
	$\rightarrow \pi^-(\gamma\gamma)\nu_{\tau}$	$\rightarrow \pi^- (e^+ e^- \gamma) \nu_{\tau}$	$\pi^-\pi^+\pi^- u_ au$	$\pi^-\pi^+\pi^-\nu_ au$
	$\rightarrow \pi^-((e^+e^-)\gamma)\nu_{\tau}$	$\pi^-\pi^0\pi^0 u_ au$	(mis-ID π as μ, e)	(mis-ID π as μ)
	(mis-ID π as e)	$\rightarrow \pi^-(\gamma\gamma)(\gamma\gamma) u_{ au}$		
	$e^- \bar{\nu}_e \nu_{\tau}$	$\rightarrow \pi^{-}((e^+e^-)\gamma)(\gamma\gamma)\nu_{\tau}$		
		(mis-ID π as μ)		
Expected number				
of signal events	1300	430	8	4
Fraction of				
the signal	47%	50%	37%	16%

J. Sasaki (Belle) J.Phys.Conf.Ser. 912 (2017) 012002

Acceptance cuts $\tau \to e e e \nu \bar{\nu}$

$$\sum_{i < j} \cos \theta_{ij} > 2.90$$

 $n_{\gamma} \le 1$ with $\sum_{i} E_{\gamma}^* \le 0.5 \, \text{GeV}$

Acceptance cuts $\tau \rightarrow \mu e e \nu \bar{\nu}$

$$\sum_{i < j} \cos \theta_{ij} > 2.93$$

 $n_{\gamma} \le 5 \text{ with } \sum_{i} E_{\gamma}^{*} \le 0.3 \,\text{GeV}$

J. Sasaki (Belle) J.Phys.Conf.Ser. 912 (2017) 012002

$$\mathcal{B}_{\mathrm{exp}} = \epsilon_{\mathrm{det}} \cdot \epsilon_{\mathrm{th}} \cdot \mathcal{N}_{\mathrm{obs}},$$

- ϵ_{det} : detector efficiencies
- $\epsilon_{\rm th} = \Gamma^{\rm total} / \Gamma^{\rm with\, cuts}$

	$ au ightarrow {\it eee} ar u u$	$ au o \mu$ ee $ar{ u} u$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{r} 4.2488(4)\cdot 10^{-5} \\ 4.2445(4)\cdot 10^{-5} \end{array}$	$\begin{array}{c} 1.9891(1)\cdot 10^{-5} \\ 1.9934(1)\cdot 10^{-5} \end{array}$
$\epsilon_{ m LO}^{ m th}$	1.5145(2)	2.4370(2)
$\epsilon_{\rm NLO}^{\rm th}$ $\epsilon' = \epsilon_{\rm NLO} / \epsilon_{\rm LO}$	1.5492(9) 1.0229(6)	2.4571(5) 1.0082(2)

Searching for CLFV with Mu3e

Signal: $\mu \rightarrow eee$

Background: $\mu \rightarrow eee \nu \bar{\nu}$

Calibbi, Signorelli, Riv.Nuovo Cim. 41 (2018) 1

Searching for CLFV with Mu3e

Signal: $\mu \rightarrow eee$

Background: $\mu \rightarrow eee \nu \bar{\nu}$

A. Perrevoort (Mu3e), 1802.09851 [physics.ins-det]

C. Greub & MF, JHEP 1701 (2017) 084.

- Two independent Monte Carlo programs are available for $\tau \to \ell \nu \bar{\nu} \gamma$ and $\tau \to \ell \nu \bar{\nu} \ell' \ell'$.
- Corrections to $\mathcal{B}(\tau \to \ell \nu \bar{\nu} \gamma)$ are of order 3 10%.
- Corrections to $\mathcal{B}(au o \ell
 u ar
 u \ell' \ell')$ are of order 0.1 1%.
- Detector acceptance or particularly stringent cuts can easily enhance radiative corrections at the 10 % level.
- Monte Carlo generators at NLO are mandatory to experimental analysis aiming at 1 % accuracy.

Backup

B	Dicus&Vega 1994	Volobouev (CLEO) 199	5 Flores-Tlalpal 2016	Diaz 2017	Fael	2018		PSU	
					LO	corr	LO	corr	rel.
$\tau \rightarrow e e^+e^-$	4.15(6)·10 ⁻⁵	4.457(6)·10 ⁻⁵	4.21(1)·10 ⁻⁵	4.22(2)·10 ⁻⁵	4.2488(4)·10 ⁻⁵	$-4.2(1) \cdot 10^{-8}$	4.2489(1)·10 ⁻⁵	-4.0(2) ·10 ⁻⁸	-0.000944281
$\tau \rightarrow \mu e^+e^-$	1.97(2)·10 ⁻⁵	2.089(3)·10 ⁻⁵	1.984(4)·10 ⁻⁵	1.987(3)·10 ⁻⁵	1.989(1)·10 ⁻⁵	4.4(1)·10 ⁻⁸	1.9879(2)·10 ⁻⁵	4.43(5)·10 ⁻⁸	0.00222725
$\tau \rightarrow \mathbf{e} \mu^+ \mu^-$	1.257(3)·10 ⁻⁷	1.347(2)·10 ⁻⁷	1.247(1)·10 ⁻⁷	1.246(2)·10 ⁻⁷	1.2513(6) · 10 ⁻⁷	$2.70(1) \cdot 10^{-9}$	1.2513(2)·10 ⁻⁷	2.708(2)·10 ⁻⁹	0.0216386
$\tau \rightarrow \mu \mu^+ \mu^-$	1.190(2)·10 ⁻⁷	1.276(5)·10 ⁻⁷	1.183(1)·10 ⁻⁷	1.184(1)·10 ⁻⁷	1.1837(1)·10 ⁻⁷	2.276(2)·10 ⁻⁹	1.1838(1)·10 ⁻⁷	2.276(1)·10 ⁻⁹	0.0192223

<10	1.1σ	1.25σ	1.5 <i>a</i>	20	3σ	50	10σ	50 <i>σ</i> ∞σ

table by Y. Ulrich

	MF,Greub	Pruna, Signer, Ulrich
Full mass dependence	\checkmark	\checkmark
Decaying μ	unpolarized	polarized
One-loop	LoopTools, Collier	GoSam
IR	PS slicing, dipoles	FKS
Phase space	analytic integration $ u$ s PS	fully differential
Had. corrections	1	×

Fit:

•
$$\kappa_{\rm NLO} = 2.217(2) \times 10^{-19}$$

•
$$\gamma_{
m NLO} = 6.0768(4)$$

F. Jegerlehner, The anomalous magnetic moment of the muon (2nd Ed.), Springer.