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Motivation to study πK scattering with Dispersion Relations 

• π,K are Goldstone Bosons of QCD → Test Chiral Symmetry Breaking

• Extracted frequently with strong model dependences (Breit Wigners,….)

Particularly controversial:
κ/ K0* (700) light scalar meson. “needs confirmation” @PDG.
Light scalar mesons longstanding candidates for non-ordinary mesons. 
Needed to identify the lightest scalar nonet

• π,K appear as final products of almost all hadronic strange processes:
B,D, decays, CP violation studies… many examples in this workshop

Was K0∗(800) until last 2018 PDG revision!
Partly triggered by our 2017 work

• Main or relevant source for PDG parameters of:
K0* (700), K0*(1430),K1∗(892),K1∗(1410),K2∗(1410),K3∗(1780)

Analytic Methods  reduce model independence
Dispersion Relations model independent



Overview of the K0*(700) or “kappa” meson until 2018 @PDG

Omittted from the 2018PDG summary table since, “needs confirmation”
All descriptions of data respecting unitarity and chiral symmetry find a pole at 
M=650-770 MeV and Γ~550 MeV or larger.

Best determination comes from a SOLUTION of a Roy-Steiner dispersive
formalism, consistent with UChPT Decotes Genon et al 2006

PDG may reconsider situation.. if additional independent dispersive DATA analysis. 

2017PDG K0
∗(700) dominated by such a SOLUTION

M-i Γ/2=(682±29)-i(273±i12) MeV

We were encouraged by PDG members to do it.

(630-730)-i(260-340) MeV
name changed to K0

∗(700)

New PDG2018:                             

But still “Needs Confirmation”



Most reliable sets:
Estabrooks et al. 78 (SLAC)
Aston et al.88 (SLAC-LASS)

I=1/2 and 3/2 combination

No clear “peak” or phase movement
of κ/𝐾𝐾0∗(700) resonance

Definitely NO BREIT-WIGNER shape

Mathematically correct to use POLES

Data on πK scattering: S-channel

Strong support for K0*(700) from decays of heavier mesons, but rigorous
model-independent extractions absent. Often inadequate Breit-Wigner formalism

POLE extraction rigorous when using Dispersion Relations
or complex-analyticity properties



Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?
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Analyticity is expressed in the s-variable, not in Sqrt(s)

Important for
the 𝜅𝜅/𝐾𝐾0∗(700)

• Threshold behavior (chiral symmetry)

• Subthreshold behavior (chiral symmetry →Adler zeros)

• Other cuts (Left & circular)

𝜅𝜅/𝐾𝐾0∗(700)

Less important for other resonances…

• Avoid spurious singularities

For partial waves and different masses, additional circular cut 



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 



Since interested in the resonance region, we use minimal number of subtractions

Defining the s↔u symmetric 
and anti-symmetric amplitudes
at t=0 

We need one subtraction for the symmetric amplitude

And none for the antisymmetric

Forward dispersion relations for K π scattering.

where Σ𝜋𝜋𝐾𝐾 = mπ
2+mK

2



(not a solution of dispersión relations,
but a constrained fit)

A.Rodas & JRP, PRD93,074025 (2016)

Forward Dispersion Relation
analysis of 

πK scattering DATA
up to 1.6 GeV

First observation:
Forward Dispersion relations

Not well satisfied by data
Particularly at high energies

So we use 
Forward Dispersion Relations 

as CONSTRAINTS on fits



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)



How well Forward Dispersion Relations are satisfied by unconstrained fits

Define an averaged χ2 over these points, that we call d2

Every 22 MeV calculate the difference between both sides of the DR /uncertainty

d2 close to 1 means that the relation is well satisfied

d2>> 1 means the data set is inconsistent with the relation.

2 FDR’s Sum Rules 
threshold

Parameters of the 
unconstrained  data fits

To obtain CONSTRAINED FITS TO DATA (CFD) we minimize:

W roughly counts the number
of effective degrees of freedom 
(sometimes we add weight on certain energy regions)

This can be used to check DR



Consistency up to 1.6 GeV!!

Consistency up to 1.74 GeV!!



S-waves. The most interesting for the K0* resonances 

Largest changes from UFD to CFD

at higher energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)



P-waves:  Small changes

SOLUTION from 
previous Roy-Steiner 
approach

From Unconstrained (UFD) to Constrained Fits to data (CFD)

Our fits
describe 
data well



D-waves:  Largest changes of all, but at very high energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)

F-waves:  

Imperceptible changes

Regge parameterizations allowed to vary: Only πK-ρ residue changes by 1.4 deviations



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)



Strange resonance poles from CFD: Using Padé sequences JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

Almost model independent: Does not assume any particular functional form
(but local determination)

Based on previous works by P.Masjuan, J.J. Sanz Cillero, I. Caprini, J.Ruiz de ELvira



Strange resonance poles from CFD: Using Padé sequences JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

The method can be used for inelastic resonances too. Provides resonance parameters
WITHOUT ASSUMING SPECIFIC FUNCTIONAL FORM



Kappa pole analytic determinations from constrained fits

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but not model independent

(680±15)-i(334±7.5) MeV

2) Using Padé Sequences… 
JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91 (670±18)-i(295± 28) MeV

Compare to PDG2017:                             
(682±29)-i(273±12) MeV

New PDG2018:                             
(630-730)-i(260-340) MeV

And name changed
K0

∗(700)
Still “Needs Confirmation”



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)



ππ→KK HDR

JRP, A. Rodas PRD 2016 

gI
J =ππ → KK partial waves. We study (I,J)=(0,0),(1,1),(0,2)

fI
J = Kπ → Kπ partial waves. Taken from previous dispersive study

Δ(t) depend on higher waves
or on Kπ→Kπ.

Solve in descending J order
We have used models for higher waves, but give very small contributions

𝐺𝐺𝐽𝐽,𝐽𝐽𝐽
𝐼𝐼 (t,t’) =integral kernels, depend on a parameter

Lowest # of subtractions. Odd pw decouple from even pw. 

20

Integrals from
2π threshold !



ππ→KK HDR

For unphysical region below KK threshold, we used Omnés function

This is the form of our HDR: Roy-Steiner+Omnés formalism

We can now check how well these HDR are satisfied

21



I=1,J=1, UFD vs.CFD

UFD already good CFD even better

Requires almost imperceptible change from UFD to CFD

22

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=2,J=2, UFD vs. CFD

UFD room 
for improvement

Very small change from UFD to CFD. Only significant at threshold and high energies 

CFD better

But still tension at threshold

Other parameterizations (BW…), 
worse.

23

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=0,J=0, UFD vs. CFD
We use I=0,J=2 CFD as input.

24

Remarkable improvement from UFD to CFD, except at threshold. 
Both data sets equally acceptable now.

Two possible sets of data
ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=0,J=0, CFD

1-σ differences between
UFD and CFD phase

Some 2-σ level differences between UFDB and CFDB between 1.05 and 1.45 GeV
CFDC consistent within 1-σ band of UFDC

2-σ differences between
UFDB and CFDB phase

25

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV

• As πK Checks: Large inconsistencies. 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, in progress. PRELIMINARY results shown here



πK Hiperbolic Dispersion Relations I=1/2, J=0

LARGE inconsistencies of unconstrained fits with the minimal number of subtractions 
(shown here)
Fairly consistent with one more subtraction for F-

Consistent within uncertainties
if we use the DR as constraints



πK Hiperbolic Dispersion Relations I=3/2, J=0  and I=1/2, J=0
SIZABLE inconsistencies of unconstrained fits with the minimal number 
of subtractions (shown here). Fairly consistent with one more subtraction for F-

Made consistent within uncertainties when we use the DR as constraints



πK CFD vs. UFD
Constrained parameterizations suffer minor changes but still describe 
πK data fairly well. Here we compare the unconstrained fits (UFD) versus the 
constrained ones (CFD)

The “unphysical” rho peak in ππ→KK grows by 10% from UFD to CFD



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV

• As πK Checks: Large inconsistencies. 

• Rigorous κ/K0
∗(700) pole 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, in progress. 
PRELIMINARY results

shown here



(658±13)-i(278.5±12) MeVRecall Roy-Steiner SOLUTION from Paris group
Decotes-Genon-Moussallam 2006

Dispersive pole analysis from constrained fit to data JRP, A. Rodas, in preparation

• Constrained FIT TO DATA (not solution but fit)
• Improved P-wave (consistent with data)
• Realistic ππ→KK uncertainties (none before)
• Improved Pomeron

• Constrained ππ→KK input with DR 
• FDR up to 1.6 GeV
• Fixed-t Roy-Steiner Eqs.
• Hyperbolic Roy Steiner Eqs.

both in real axis (not before) 
and complex plane

• Both one and no-subtraction
for F- HDR (only the subtracted one before)

Now we have:

No sub:  (662± 9)-i(288±31) MeV
1 sub: (661±13)-i(293±20) MeV



• The πK and π π →KK data do not satisfy well basic dispersive 
constraints

• Using dispersion relations as constraints we provide simple and 
consistent data parameterizations. 

• Simple analytic methods of complex analysis can then reduce the 
model dependence in resonance parameter determinations. 

• We are implementing partial-wave dispersion relations whose 
applicability range reaches the kappa pole. Our preliminary results 
confirm previous studies. We believe this resonance should be 
considered “well-established”, completing the nonet of lightest 
scalars.

Summary



No sub:  (662± 9)-i(288±31) MeV
1 sub: (661±13)-i(293±20) MeV

Dispersive pole analysis from constrained fit to data JRP, A. Rodas, in preparation

(658±13)-i(278.5±12) MeV

Compatible with 
Paris group
Decotes-Genon-Moussallam 2006

When using the constrained fit to data both poles come out nicely compatible 



Kappa pole from CFD

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but not model independent

(680±15)-i(334±7.5) MeV



Strange resonance poles from CFD: Using Padé sequences JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

Almost model independent: Does not assume any particular functional form
(but local determination) CAN BE USED FOR INELASTIC RESONANCES TOO

Based on previous works by P.Masjuan, J.J. Sanz Cillero, I. Caprini, J.Ruiz de ELvira



Why use dispersion relations?    

CAUSALITY: 
Amplitudes T(s,t) are ANALYTIC in 
complex s plane but for cuts for thresholds.
Crossing implies left cut from u-channel threshold

Cauchy Theorem determines T(s,t) at ANY s, 
from an INTEGRAL on the contour

Good for: 1) Calculating T(s,t) where there is not data

2) Constraining data analysis

3) ONLY MODEL INDEPENDENT extrapolation to complex s-plane
without extra assumptions

If T->0 fast enough at high s, curved part vanishes
Otherwise, determined up to 
a polynomial (subtractions)
Left cut usually a problem



Kappa pole from CFD

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but not model independent

(680±15)-i(334±7.5) MeV

2) Using Padé Sequences… 
JRP, A. Rodas  & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91 (670±18)-i(295± 28) MeV

Compare to PDG2017:                             
(682±29)-i(273±12) MeV



The resonance is NO LONGER the κ nor the K0∗(800)

But Still “Needs 
Confirmation” !

Plenty of room 
for improvement
on parameters

Best analysis so far:
Roy-Steiner 

dispersion relations

Our
Pade sequences
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