

Theoretical aspects of XYZ states

Feng-Kun Guo

Institute of Theoretical Physics, CAS

International Workshop on e^+e^- Collisions from Phi to Psi 2019

Novosibirsk , Feb. 25 – March 1, 2019

Main reactions producing XYZ

• In e^+e^- collisions

- ▶ Energy coverage limited: ≤ 4.6 GeV @BESIII, thus
 - □ little is known about vector states above that energy;
 - □ for other quantum numbers, even lower mass accessible: $e^+e^- \rightarrow X + \gamma$ /pions; resonances decaying into $\psi \phi$, $\psi \omega$ cannot be studied
 - No access to charm-anticharm baryon-pair thresholds, e.g., $\Lambda_c^+ \Lambda_c^-$; no access to thresholds of a pair of excited charm mesons, e.g., $D_1 \overline{D}_1$
- \succ e⁺e[−] → γ_{ISR} Y: low rates due to an additional factor of α
- In weak decays $b \rightarrow [c\bar{c}]s$

- b h
- → Energy region limited: $< m_B m_K \approx 4.8 \text{ GeV}$
- Final states with 3 or more hadrons: $B \rightarrow K\psi\pi, K\psi\pi\pi, K\psi\omega, K\psi\phi$, ... Many states observed, e.g., X(3872), X(3915), ...

Main reactions producing XYZ

- Difficulties for multi-hadron final states
 - ✓ Many resonances from the cross channel:

branching fractions often unknown, interference between overlapping

intermediate states can be different from external ones; threshold cusps; triangle singularities (TS) singularities

$Z_c(4430, 4200)$: ambiguity due to TS

• $\mathcal{B}(Z_c(4430) \rightarrow \psi'\pi) \gg \mathcal{B}(Z_c(4430) \rightarrow J/\psi\pi)$ explained using $\frac{\mathcal{B}(Y(4260) \rightarrow \psi'\pi\pi)}{\mathcal{B}(Y(4260) \rightarrow J/\psi\pi\pi)} = 0.1 - 0.5$ From a combined fit by J. Zhang, L. Yuan, EPJC77(2017)727

$Z_c(4430, 4200)$: ambiguity due to TS

• Argand plot for $Z_c(4430)$: diagram (a) interfered with a constant complex bg.

Exp. data: LHCb, PRL112(2014)222002

TS sensitive to kinematics!

TS: nontrivial energy dependence

Difficulty/opportunity of identifying Z_c

BESIII measurement of $e^+e^- \rightarrow \psi' \pi^0 \pi^0$

BESIII, PRD97(2018)052001

P=+ spin multiplets

- Cleven et al., PRD92(2015)014005
- For charmonia, spin triplet: $\chi_{cJ}(J^{++}, J = 0, 1, 2)$; and spin singlet: $h_c(1^{+-})$
- > For hadro-charmonia, similar structure as charmonia
- > For tetraquark models, controlled by $c\bar{c}$ (not necessarily color singlet) interaction
- For hadronic molecules, controlled by meson-meson interaction. Examples:
 - **D** For X(3872), an $X_2(2^{++})$ is generally expected, not identified so far
 - \square Existence of 0^{++} and 1^{+-} unknown

D For Z_b states, $W_{bJ}(J^{++}, J = 0, 1, 2, I = 1)$ expected

Bondar et al., PRD84(2011)054010; See talk by Alexey Nefediev

 W_{bJ} not seen so far in $\Upsilon \pi \pi$ in search of X_b CMS, PLB727(2013)57; ATLAS, PLB740(2015)199 (re-interpreted)

• More insights from studying states with related J^{PC} (maybe the same multiplet)

- > States with J^{++} at around 3.9 GeV: X(3860), X(3872), X(3915), $\chi_{c2}(3930)$, ...

Vector charmonium(-like) states

- In e^+e^- , from decays of higher vector charmonia
- Vector charmonium(-like) states

Too many vector states (6+3) compared to potential model

predictions or lattice QCD results using only $c\bar{c}$ operators

Lattice QCD, L. Liu et al., JHEP1207,126

► Not seen in $D\overline{D}$, while $B(\psi(3770) \rightarrow D\overline{D}) = (98^{+8}_{-9})\%$

Y: many thresholds above 4 GeV

From Y to X and Z

• Strong S-wave coupling of Y(4260) to $D_1\overline{D} + c.c.$

• Strong S-wave coupling of X(3872) and $Z_c(4020)$ to $D^*\overline{D} + c.c.$

10

From Z to X ?

- Similarly, strong S-wave coupling of $Z_c(4020)$ to $D^*\overline{D}^*$; strong S-wave coupling of X(3872) to $D^*\overline{D} + c.c.$
- $Z_c(4020)^0 \to X(3872)\gamma$ and $Z_c(4020)^{\pm} \to X(3872)\pi^{\pm}$

- Branching fractions strongly energy-sensitive, ~ permil to percent level
- Reason: triangle singularity close to the physical region

From Y to X₂?

12

• X_2 : 2⁺⁺, $M \approx 4$ GeV, $D^*\overline{D}^*$, spin partner of X(3872) in hadronic molecular model

Nieves, Pavon Valderrama, PRD86(2012)056004

Small width $\lesssim 50 \text{ MeV}$

Albaladejo et al., EPJC75(2014)547; Baru et al., PLB763(2016)20

• Methods of producing X_2 in e^+e^- : $\Gamma(\psi(nD) \rightarrow \gamma X_2)/(g_4 x_2 \text{ GeV})^2 \text{ keV}$ without width $\succ e^+e^- \rightarrow \gamma X_2, X_2 \rightarrow D\overline{D}, D\overline{D}^*, I/\psi\omega$ with width 30 FKG, Meißner, Yang, PLB740(2015)42 20 Y(4???) 10 4.25 4.30 4.45 4.35 4.404.50 M_{ψ} [GeV] $\sqrt{s} \sim 4.26 \text{ GeV} + (M_{D_1/D_2} + M_{D^*}) - (M_{D_1} + M_D) \sim [4.4, 4.5] \text{ GeV}$ $\succ \gamma \gamma \rightarrow X_2 \rightarrow D\overline{D}, D\overline{D}^*, I/\psi \omega$ Belle data RL96(2006)082003 BABAR data 30 RD81(2010)092003 Events / 10 MeV Svents / 10 MeV No signal in existing 20 data for $\gamma \gamma \rightarrow D\overline{D}$

¹/¹/_{3.8} ^{3.9} ^{4.0} ^{4.1} ^{4.1} ^{4.2} ⁵/₀ ^{3.8} ^{3.9} ^{4.0} ^{4.0} ^{4.1} ^{4.2} ⁵/₀ ⁵/_{3.8} ^{3.9} ^{4.0} ^{4.0} ^{4.1} ^{4.1} ^{4.2} ⁵/₀ ⁵/_{3.8} ^{3.9} ^{4.0} ^{4.0} ^{4.1} ^{4.1} ⁵/₀ ⁵/_{3.8} ^{3.9} ^{4.0} ^{4.0} ^{4.1} ^{4.1} ⁵/₀ ⁵/_{3.8} ^{3.9} ^{4.0} ^{4.1} ^{4.1} ^{4.2} ⁵/₀ ⁵/_{3.8} ^{3.9} ^{4.0} ^{4.0} ^{4.1} ^{4.1} ^{4.2} ⁵/₀ ⁵/_{3.8} ^{3.9} ^{4.0} ^{4.0} ^{4.1} ^{4.1} ^{4.2} ⁵/₀ ⁵/_{3.8} ^{3.9} ^{4.0} ^{4.1} ^{4.1} ^{4.2} ⁵/₀ ⁵/₀ ⁵/_{3.8} ^{3.9} ^{4.0} ^{4.1} ^{4.1}

XYZ at SCTF/STCF

- No clear pattern for XYZ so far: to establish the hidden-charm spectrum far beyond 4 GeV, necessary to establish a pattern
- To study the known vector states and Z_c in much more detail; higher vector spectrum
- For J^{++} excited states with masses about 3.8-4 GeV: At SCTF/STCF, hadronic channels: $E \gtrsim 4.7 \text{ GeV}, e^+e^- \rightarrow \omega X(J^{++})$
- To study the heavier PC=++ states observed in $\phi J/\psi$, E > 5 GeV, $e^+e^- \rightarrow \phi X(J^{++})$
- E > 5 GeV, to reveal expected rich phenomena above charm baryon-antibaryon thresholds; also above thresholds of excited charm-meson pairs; physics of excited charm mesons
- E > 5 GeV, $J/\psi p\bar{p}$, $\Lambda_c \overline{D}\bar{p}$, ... accessible, hidden-charm pentaquarks, rich spectrum above $\Lambda_c \overline{D}$ threshold
- Energy can vary \implies handle of kinematic singularities in multi-hadron final states

Looking forward to new discoveries

HADRON2019: August 16-21, 2019, Guilin, China http://hadron2019.csp.escience.cn https://indico.ihep.ac.cn/event/9119

Thank you for your attention!

14

XYZ: no clear pattern

Y(4260): puzzling features

(PP)

- No obvious slot in charmonium spectrum in quark model
- Not seen in R-scan
- Not seen in $D\overline{D}$, $D^*\overline{D} + c.c.$, contrary to known ψ states above the $D\overline{D}$ threshold
- The only observed open-charm channel: $D^0D^{*-}\pi^+ + c.c.$
- Similar cross sections into spin-triplet and spin-singlet final states
 - > Spin-triplet: $J/\psi \pi^+\pi^-$, $\chi_{c0}\omega$
 - > Spin-singlet: $h_c \pi^+ \pi^-$
 - > Mixture of spin-triplet and spin-singlet: $D^0 D^{*-} \pi^+ + c.c.$

Y(4260): strong coupling to $D_1\overline{D}$

• Y(4260) as mainly a $D_1(2420)\overline{D}$ hadronic molecule (never purely)

• a large coupling to $D_1\overline{D} \implies$ large impact on the line shape M. Cleven et al., PRD90(2014)074039 see also Qin et al., PRD94(2016)054035

 $M_Y = (4217.2 \pm 2.0) \text{ MeV}$

Triangle singularity

on-shell momentum of m_2 at the left and right cuts in the A rest frame $\beta = |\vec{p}_{23}|/E_{23}, \gamma = 1/\sqrt{1-\beta^2}$ Bayar et al., PRD94(2016)074039

- $p_2 > 0$, $p_3 = \gamma \left(\beta E_3^* + p_2^*\right) > 0 \Rightarrow m_2$ and m_3 move in the same direction
- velocities in the A rest frame: $v_3 > \beta > v_2$

$$v_2 = \beta \frac{E_2^* - p_2^* / \beta}{E_2^* - \beta p_2^*} < \beta, \qquad v_3 = \beta \frac{E_3^* + p_2^* / \beta}{E_3^* + \beta p_2^*} > \beta$$

Conditions (Coleman–Norton theorem): Coleman, Norton (1965); Bronzan (1964) all three intermediate particles can go on shell simultaneously $\vec{p}_2 \parallel \vec{p}_3$, particle-3 can catch up with particle-2 (as a classical process) needs very special kinematics \Rightarrow process dependent! (contrary to pole position) For a brief review, see FKG, Hanhart, Meißner, Wang, Zhao, Zou, RMP90(2018)015004

From Y to Z

- Strong S-wave coupling of Y(4260) to $D_1\overline{D} + c.c.$
- Strong S-wave coupling of $Z_c(3900)$ to $D^*\overline{D} + c.c.$
- Natural production mechanism of $Z_c(3900)$:

Enhancement due to closeness to thresholds

$$\mathcal{A} \sim \frac{v^5}{(v^2)^3} \operatorname{Vertex}_{D_1 D^*}(p_\pi) = \frac{1}{v} \operatorname{Vertex}_{D_1 D^*}(p_\pi)$$

Intermediate mesons are nonrelativistic, $v \sim 0.1 \ll 1$

Power counting: 3-momentum $\sim \mathcal{O}(v)$, energy $\sim \mathcal{O}(v^2)$

loop integral measure $\sim \mathcal{O}(v^5)$, propagator $\sim \mathcal{O}(v^{-2})$

From Y to Z

• Coupled-channel analysis with both FSI and triangle diagrams

Albaladejo, FKG, Hidalgo-Duque, Nieves, PLB755(2016)337

Blue bulbs: FSI T-matrix, it may or may not have a near-threshold pole (Z_c) ; data will tell Kinematical singularities (threshold cusp, TS) and resonances are NOT exclusive

From Y to Z

Fit to BESIII data at 4.26 GeV Albaladejo, FKG, Hidalgo-Duque, Nieves, PLB755(2016)337 $Z_{c}(3900)$ is needed: either a resonance or a virtual state, more precise line shape data needed

Data 🛏

4050

4100

M_{Z_c} (MeV)	$\Gamma_{Z_c}/2$ (MeV)	Ref.	Final state	-	
3899 ± 6	23 ± 11	[1] (BESIII)	$J/\psi \pi$		
3895 ± 8	32 ± 18	[2] (Belle)	$J/\psi \pi$		
3886 ± 5	19 ± 5	[3] (CLEO-c)	$J/\psi \pi$		
3884 ± 5	12 ± 6	[4] (BESIII)	$ar{D}^*D$		
3882 ± 3	13 ± 5	[5] (BESIII)	$ar{D}^*D$		
$3894 \pm 6 \pm 1$ $3886 \pm 4 \pm 1$	$\begin{array}{c} 30\pm12\pm6\\ 22\pm6\pm4 \end{array}$	$\begin{array}{l} \Lambda_2 = 1.0 \ \text{GeV} \\ \Lambda_2 = 0.5 \ \text{GeV} \end{array}$	J/ψ π , $ar{D}^*D$ J/ψ π , $ar{D}^*D$	resonance pole	$\chi^2/dof = 1.09$
$\begin{array}{c} 3831 \pm 26^{+7}_{-28} \\ 3844 \pm 19^{+12}_{-21} \end{array}$	virtual state virtual state	$\Lambda_2 = 1.0 \text{ GeV}$ $\Lambda_2 = 0.5 \text{ GeV}$	$J/\psi \pi, ar{D}^* D \ J/\psi \pi, ar{D}^* D$	or virtual state	$\chi^2/dof = 1.36$