Baryon Studies at Belle

PHIPSI19 February 28, 2018

Seongbae Yang (for Belle Collaboration) Department of Physics Korea University

- Physics beamtime: 1999~2010 years
- √s= ~10.6 GeV
- Huge statistics, $\sim 10^9 B\overline{B}$ pairs, $\sim 1 \text{ ab}^{-1}$ integrated luminosity
- Baryon production at Belle
 - B meson decay.
 - $-e^+e^- \rightarrow c\bar{c}$, direct production of charmed baryons.
 - $\Upsilon(1s)$ decay, enhanced baryon fraction.

Contents

1. Decays of Λ_c^+

- Doubly Cabibbo-Suppressed Decay, $\Lambda_{\rm c}^+ \rightarrow p K^+ \pi^-$
- $\Lambda_{\rm c} \rightarrow \Sigma \pi \pi$ Decays
- $\Lambda_{\rm c}^+ \rightarrow K^- K^+ p \pi^0$ and $\Lambda_{\rm c}^+ \rightarrow p K^- \pi^+ \pi^0$
- 2. Study of Ξ_c and Ω_c
 - Absolute Branching Fractions of Ξ_c^0 Decays
 - $\Xi_c(2930)^0$ and $\Xi_c(2930)^+$
 - Excited Ω_c^0 Baryons
- 3. Observation of Hyperons
 - Excited Ω^- baryon
 - $\Xi(1620)^0$ and $\Xi(1690)^0$
- 4. Summary

1. Decays of Λ_c^+

Doubly Cabibbo-Suppressed Decay, $\Lambda_{\rm c}^+ ightarrow p K^+ \pi^-$

• Doubly Cabibbo-suppressed decay: $c \rightarrow d$ and $W^+ \rightarrow u\bar{s}$ at the same time.

→ $\frac{B(\Lambda_c^+ \to pK^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)}$ is expected to be lower than $\tan^4\theta_{\rm C}(=0.00285)$.

• The contribution of W-exchange channel can be extracted.

1. Decays of Λ_c^+

 Using the full data sample of Belle, 980 fb⁻¹, we clearly observed the DCS decay.

 $= \frac{B(\Lambda_c^+ \to pK^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)} = (2.35 \pm 0.27(Stat.) \pm 0.21(Syst.)) \times 10^{-3}$

Comparing with the theoretical expectation (0.28%), the contribution of W-exchange channel is not large.

$\Lambda_c \rightarrow \Sigma \pi \pi$ Decays

- $\Sigma \pi$ scattering length and $\Lambda(1405)$ study.
- 711 fb⁻¹ data sample an energy at or near the $\Upsilon(4S)$.
- Signal yield extracted using a model-independent way:

Efficiency for each bin. \rightarrow Yield for each bin \rightarrow Efficiency-corrected yield for each bin. \rightarrow Add them.

• The most precise measurement.

*PRD 98, 112006

Decay Ratio	Branching Fraction Ratio
$\frac{B(\Lambda_c^+ \to \Sigma^+ \pi^- \pi^+)}{B(\Lambda_c^+ \to pK^- \pi^+)}$	0.719±0.003±0.024 *First measurement
$\frac{B(\Lambda_c^+ \to \Sigma^0 \pi^+ \pi^0)}{B(\Lambda_c^+ \to p K^- \pi^+)}$	0.575±0.005±0.036
$\frac{B(\Lambda_c^+ \to \Sigma^+ \pi^0 \pi^0)}{B(\Lambda_c^+ \to p K^- \pi^+)}$	0.247±0.006±0.019

9

$\Lambda_{\rm c}^+ ightarrow K^- K^+ p \pi^0$ and $\Lambda_{\rm c}^+ ightarrow p K^- \pi^+ \pi^0$

- Hidden-strangeness pentaquark, $P_s^+(uuds\bar{s})$, search.
- 915 fb⁻¹ data sample at or near the $\Upsilon(4S)$ and $\Upsilon(5S)$.

- $B(\Lambda_c^+ \rightarrow K^- K^+ p \pi^0)_{NR} < 6.3 \times 10^{-5}$, first upper limit report (less than 3σ significance).
- $\frac{B(\Lambda_c^+ \to pK^-\pi^+\pi^0)}{B(\Lambda_c^+ \to pK^-\pi^+)} = 0.685 \pm 0.007 \pm 0.018$, the most precise measurement.

2. Study of Ξ_c and Ω_c

Absolute Branching Fractions of Ξ_c^0 Decays

- 772 × 10⁶ $B\overline{B}$ pairs.
- 1st Step: Inclusive analysis of $B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0$ using a missing mass technique: B^+ tag using a neural network.
 - $\rightarrow \overline{\Lambda}_c^-$ reconstruction from remaining tracks.
 - \rightarrow 'Recoil mass' calculation.

→ Absolute $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$.

• 2nd Step: Exclusive analysis of $B^- \to \overline{\Lambda}_c^- \Xi_c^0 \& \Xi_c^0$ decays

- $\rightarrow B(B^- \rightarrow \overline{\Lambda}^-_c \Xi^0_c) \times B(\Xi^0_c \rightarrow \Xi^- \pi^+) = (1.71 \pm 0.28) \times 10^{-5}$
- First absolute branching fractions: $B(\Xi_c^0 \to \Xi^- \pi^+) = 1.80 \pm 0.50 \pm 0.14\%$ $B(\Xi_c^0 \to \Lambda K^- \pi^+) = 1.17 \pm 0.37 \pm 0.09\%$ $B(\Xi_c^0 \to pK^- K^- \pi^+) = 0.58 \pm 0.23 \pm 0.05\%$

$\Xi_c(2930)^0$ and $\Xi_c(2930)^+$

• 772 \times 10⁶ $B\overline{B}$ pairs.

*EPJC 78:928 and 78:252

• $\mathcal{E}_{c}(2930)^{0}$: 5.1 σ significance, $M = 2928.9 \pm 3.0 \pm 3.0 \pm 12.0$ MeV

• $\mathcal{E}_c(2930)^+$: larger than 3.5 σ significance, $M = 2942.3 \pm 4.4$ MeV

Excited Ω_c^0 Baryons

• LHCb reported 5 narrow Ω_c^* resonances in $\Omega_c^* \to \Xi_c^+ K^-$.

*LHCb Collaboration, PRL 118 182001

 \rightarrow We can confirm them.

2. Study of Ξ_c and Ω_c

• Significant signals for $\Omega_c(3066)$ and $\Omega_c(3090)$. Less significant for $\Omega_c(3000)$ and $\Omega_c(3050)$. We cannot confirm $\Omega_c(3119)$.

3. Observation of Hyperons

Excited Ω^- baryon

• $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonances data sample which contains enhanced baryon fraction.

• Large gap (~600 MeV/ c^2) between Ω^- and Ω^{*-} because $\Omega^{*-} \rightarrow \Omega^- \pi^0$ is highly suppressed.

• Search Ω^{*-} by $\Omega^{*-} \to \Xi K$ decay (analogous to $\Omega_c^* \to \Xi_c^+ K^-$)

$\Xi(1620)^{0}$

- 980 fb⁻¹ data sample.
- Search for $\Xi^{*0} \to \Xi^- \pi^+$ in $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$

- Ξ(1620)⁰:
- $M = 1610.4 \pm 6.0$ MeV,
- Γ =60.0±4.8 MeV
- Difficult to explain them by constituent quark models.
 Exotic hadron?
- Analogous to Λ(1405)?
 Two poles in S=-2 sector?

4. Summary

Summary

Belle beamtime was over ~10 years ago, but new results are still coming out.

1. New Λ_c^+ decays were observed and several branching ratios were precisely measured. - $\Lambda_c^+ \rightarrow pK^+\pi^-$, $\Lambda_c \rightarrow \Sigma\pi\pi$, and $\Lambda_c^+ \rightarrow pK^-\pi^+\pi^0$ 2. We observed $\Xi_c(2930)^0$ and Ω_c^* resonances, and measured absolute branching fractions of Ξ_c^0 decays. 3. We reported observation of new hyperons, $\Omega(2212)$ and $\Xi(1620)^0$.

There are still many ongoing analyzes for baryon studies.

*Backup

Branching Fractions of Ω_c^0 Decays

- Precise measurements of Ω_c^0 decay branching fractions.
- Using 980 fb⁻¹ data sample.

*PRD 97 032001(R)

Decay Ratio (/ $B(\Omega_c^0 \rightarrow \Omega^- \pi^+)$)	Branching Fraction Ratio
$B(\Omega_{\rm c}^0 \to \Omega^- \pi^+ \pi^0)$	2.00±0.17±0.11
$B(\Omega_{\rm c}^0\to\Omega^-\pi^+\pi^-\pi^+)$	0.32±0.05±0.02
$B(\Omega_{\rm c}^0\to \Xi^-\pi^+K^-\pi^+)$	0.68±0.07±0.03
$B(\Omega_{\rm c}^0\to \Xi^-K^-\pi^+)$	1.20±0.16±0.08
$B(\Omega_{\rm c}^0 \to \Xi^- \overline{K}{}^0 \pi^+)$	2.12±0.24±0.14
$B(\Omega_{\rm c}^0 \to \Xi^0 \overline{K}{}^0)$	1.64±0.26±0.12
$B(\Omega^0_{\rm c} \to \Lambda \overline{K}{}^0 \overline{K}{}^0)$	1.72±0.32±0.14
$B(\Omega_{\rm c}^0 \to \Sigma^+ {\rm K}^- K^- \pi^+)$	<0.32

Absolute Branching Fractions of Ξ_c^0 Decays

• Exclusive analysis of $B^- \to \overline{\Lambda}_c^- \Xi_c^0 \& \Xi_c^0$ decays

*PRL 122 082001

Excited Ω^- baryon

• Not $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonances data sample.

