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Abstract. The first results of the Super Charm-Tau factory muon system sim-
ulation are presented: estimation of the main characteristics such as space reso-
lution and muon identification efficiency. A design of the muon system for the
Super Charm-Tau factory based on the organic scintillator + WLS fiber + SiPM
is proposed.

1 Introduction

The Super Charm Tau-factory (SCTF) [1] is a future electron-positron collider operating in
the range of center-of-mass (c.m.) energies from 2 GeV to5÷ 6 GeV with a high luminosity
of about 1035cm−2s−1 . In this energy range practically all states with charm can be produced
including charmonium, bound states of c and c̄ quarks, charmed mesons and baryons com-
prising one c (c̄) quark. In addition, at the c.m. energy above 2mτ ≈ 3.6 GeV τ lepton pairs
can be produced. Because of its extremely high luminosity such a collider will be a copious
source of charmed particles and τ leptons.

The main goal of experiments at SCTF is a study of the processes with c quarks or τ
leptons in the final state using data samples that are at least two orders of magnitude higher
than those collected by the CLEO-c [2] and BESIII [3] experiments. The desired luminosity
corresponds to approximately 109 τ leptons, 109 D mesons and a 1012 of J/ψ mesons. The
total integrated luminosity planned to be collected at the SCTF factory is 10 ab−1. These
data samples will allow a systematic study of all states composed of quarks of the two first
generations (u, d, s and c) as well as searches for exotic states. Huge data samples will also
allow a search for principally new phenomena, such as CP violation in the D meson system
and in τ leptons as well as lepton flavor violation with high sensitivity.

The design of the detector for the SCTF is not fixed now. Below we discuss the first
results of the simulation of the muon system – one of the main SCTF detector’s subdetectors.

2 Requirements to the muon system

Being a part of the SCTF detector, muon system should both compile with the general require-
ments, such as high acceptance and efficiency, and provide muon system specific services.
Among them are muon identification (muon/pion separation), KL registration and identifi-
cation, and KL veto. To take on this challenge we plan to construct multilayer system with
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detector layers interspersed with absorber material such as steel. The use of steel as an ab-
sorber could be explained by the fact, that it will be also utilized as flux-return yoke for the
superconducting magnet. The choice of the particle detector technology, desired space and
time resolution, number of layers and width of the absorber are the subjects of R&D studies.

3 Simulation

One of the most important and urgent tasks for muon system technology choice and further
optimization is to create and to use a fast and reliable simulation tool. Optimal toolkit in this
case is pure Geant4 simulation with simplified geometry and physics lists able to produce fast
results and estimate main parameters and characteristics of the detector.

The space resolution of the system totally depends on the type of the detectors and,
therefore, resolution estimation is a cornerstone of the technology choice process. The the
muon/pion smearing due to the multiple scattering depends on the particle energy, detector’s
design and magnetic field. To find the smearing and study the feasibility to distinguish pion
and muon based on the information of the last layer achieved by the particle, the geometry
shown in Figure 1 a), is used:

• For simplicity, only the barrel part of the detector was simulated.

• The simplified design includes the following elements only:

– CsI calorimeter (inner radius 1090 mm, thickness 297.6 mm, which corresponds to 16
radiation lengths (X0).

– Magnet coil (inner radius 1610 mm, thickness 14.4 mm of copper, which corresponds to
1X0).

– 9 iron absorber layers in octant geometry (see the drawings). The distance to the inner-
most layer is 1900 mm from the beamline, thickness of the absorber layers are 30 mm,
30 mm, 30 mm, 40 mm, 40 mm, 80 mm, 80 mm, and 80 mm, respectively, which roughly
corresponds to 1.7 X0, 1.7 X0, 1.7 X0, 2.3 X0, 2.3 X0, 4.5 X0, 4.5 X0, and 4.5 X0.

– The 30 mm gaps between the absorber layers are sensitive detectors for the particles.

• Internal elements of the detector are estimated to give from 0.35 X0 to 0.6 X0 in total and
are neglected in this study.

• Magnetic field is not simulated.

The Monte Carlo simulation shows, that the unavoidable smearing of the muon tracks,
originating from J/ψ → µ+µ− decays, for the innermost layer of the muon system reaches
4.2 cm. It is mainly stipulated by the multiple scattering in the CsI calorimeter. The smearing
at the last layer raises up to 6.5 cm. These results limit the required space resolution of
the detector to be > 4 cm. The possibility of the π/µ identification has been studied with
the following algorithm: the difference between last layers, reached by pions and muons of
the same energy was compared. Since muon penetration possibilities are larger, than pion
ones, positive values correspond to the effective identification, while negative – to fakes. The
corresponding plot for muons and pions of 1 GeV/c momentum is shown in Figure 1 b).
The large number of non-informative zero values could be explained by the fact, that both
1 GeV/c pions and muons loose the major part of its energy in the calorimeter and thus do not
reach the first layer. The used π/µ separation algorithm is very rough and have been used for
demonstration purposes only. It will be replaced with much more efficient and sophisticated
identification procedures.



a)

Figure 1. a) Simplified detector design used for simulation. CsI calorimeter is drawn with the green
lines, while superconducting magnet with magenta lines. White and yellow lines designate absorber
and detector layers of the multilayer muon system, respectively. b) Difference in the number of the last
layers, reached by pions and muons of the same momenta. Positive values correspond to the effective
π/µ identification, negative to fakes. Zero values are non-informative.

4 Design proposal

Based on our previous experience with similar Belle II [7] KL and muon system [4] and taking
into account the discussed requirements, we propose the design of the SCTF detector muon
system. The technology proposed for the detector is the combination of the polystyrene strips
with scintillator dope as the detecting element. The emitted photons are to be captured by the
wavelength shifting (WLS) fiber, glued into the groove of the strip, and than transported to
the end of the strip. Silicon photomultiplier (SiPM) is used for the photon detection. Below
we briefly describe the design of the Belle II EKLM system – proposed “prototype” for the
STCF muon system.

The Belle II EKLM (Endcap detector for K-Longs and Muons) system is based on the
scintillator strips equipped with the WLS fibers read out by the silicon photomultiplier op-
erating in the Geiger mode. The entire system consists of 15600 strips assembled into 104
sectors and installed into the gaps in the segments of the Belle solenoid flux return. In the for-
ward part of the detector all 14 gaps are filled with EKLM modules, while the backward part
contains 12 layers only. Silicon photodetectors operating in Geiger mode were first used in
particle physics for CALICE hadron calorimeter prototype (7620 channels) [5]. Hamamatsu
MPPC S10362-13-050 sensor, 1.3 × 1.3 mm2 – a key element of the EKLM detector – was
developed and produced in large amount (> 60000 devices) by Hamamatsu for the T2K [6]
experiment. It was the first mass usage of MPPC’s in a large scale experiment.

The construction of the strip is shown in Figure 2 a). The 7 mm thick polystyrene strips
are produced by Uniplast (Vladimir, Russia) by extrusion which allows to manufacture
long strips. The scintillation is provided by PTP (p-terphenil) and POPOP (1,4-bis-2-(5-
phenyloxazolyl)-benzene) dopes. Being extruded, strip is cut to the proper width (4 cm) and
length, its surface is covered with diffusion reflective coating by chemical etching. A groove
is milled along the strip. Kuraray WLS Y-11(200)MSJ multi-cladding 1.2 mm diameter fibers
are glued using SL-1 glue produced at SUREL (St. Petersburg, Russia). To improve the effi-
ciency of the light collection by the WLS fiber a groove of the rounded shape is milled. This
allows to avoid small residual air bubbles at the groove corners and thus increases the glue
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Figure 2. a) Construction of the scintillating strip with glued WLS fiber. b) Module construction.

transparency. Laboratory tests demonstrate an increase in the average detected light yield by
(25 ± 5)% relative to the “standard” rectangular-shaped grooves. One of the ends of the fiber
(’far end’) is mirrored with silver-shine dye. Another one (’near end’) is connected to the
SiPM. The better optical contact between the WLS fiber and SiPM corresponds to the mini-
mal air gap between the fiber end and the SiPM surface. The surface of the SiPM is covered
with protective resin having concave shape due to the surface tension effects during the hard-
ening of the resin. As a result, the light from the fiber is defocused at the SiPM matrix. The
optimal length of WLS protrusion inside the meniscus is found to be 150 µm, which results
in (37 ± 5)% increase of the number of photoelectrons, collected by SiPM, and still ensures
no mechanical contact of the fiber end to the resin surface.

All produced strips were tested at cosmic ray stand to determine the quality of the strip as-
sembly. The measured light yield appears to be almost two times larger, than it was expected
by the TDR [7], and only a few strips were rejected. The measured time resolution of 0.7 ns
allows to use Belle II EKLM system as a time-of-flight detector for K0

L’s. A EKLM module
is constructed of two placed in orthogonal directions equal planes of 75 strips each, covered
by 1.5 mm thick polystyrene substrate from both sides and placed in the module frame boxes
previously used for Belle KLM RPC chambers (see Figure 2 b). In the middle part of the
sector, unavoidable small dead zones (0.8%) are due to the presence of support structures.
The total insensitive area between strips due to the reflective cover is only 0.3%.

5 Summary

In summary we have simulated response of the muon system of the STCF detector with the
Geant4 based Monte Carlo technique with simplified geometry. It is demonstrated that space
resolution of the detector limited by multiple scattering is ∼ 4 cm. The design of the detector
based on the organic scintillator strips with WLS fibers read out by SiPMs is proposed.
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