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Abstract. The sigma (σ) meson exchange contribution to the potential of the
muon-proton interaction in muonic hydrogen induced by the σ-meson coupling
to two photons is estimated. The transition form factor σ→ γγ is deduced from
the quark model and experimental data on the decay widths Γσγγ. It is shown
that scalar meson exchange contribution to the Lamb shift in muonic hydrogen,
∆ELs(2P−2S ), is rather large and relevant for a comparison with coming precise
experimental data.

1 Introduction

Precise investigation of the Lamb shift and hyperfine structure of light muonic atoms is a
fundamental problem for testing the Standard model and establishing the exact values of
its parameters, test of bound state theory in QED, as well as searching for effects of new
physics. At present, the relevance of these studies is related to recent experiments conducted
by the collaboration CREMA (Charge Radius Experiments with Muonic Atoms) [1, 2] with
muonic hydrogen and ions of muonic helium by methods of laser spectroscopy. As a result
of measuring the transition frequency (2PF=2

3/2 − 2S F=1
1/2 ) a more accurate value of the proton

charge radius was found to be rp = 0.84184(67) fm, which is different from the value rec-
ommended by CODATA for 5 ÷ 7σ [3]. The CODATA value is based on the spectroscopy
of the electronic hydrogen atom and on electron-nucleon scattering data. The measurement
of the transition frequency (2PF=1

3/2 − 2S F=0
1/2 ) for the singlet 2S of the state (µp) provides

the hyperfine splitting of the 2S energy level in muonic hydrogen, and thus the values of
the Zemach’s radius rZ = 1.082(37) fm and magnetic radius rM = 0.87(6) fm. The first
measurement of three transition frequencies between energy levels 2P and 2S for muonic
deuterium (2S F=3/2

1/2 −2PF=5/2
3/2 ), (2S F=1/2

1/2 −2PF=3/2
3/2 ), (2S F=1/2

1/2 −2PF=1/2
3/2 ) allowed to obtain in

2.7 times more accurate value of the charge radius of the deuteron, which is also less than the
value recommended by CODATA [3], by 7.5σ. As a result, there is an inexplicable discrep-
ancy between the values of such fundamental parameters, like the charge radius of a proton
and deuteron, obtained from electronic and muonic atoms. In the process of searching for
possible solutions of the proton charge radius "puzzle" the task of a more accurate theoreti-
cal construction of the particle interaction operator in quantum electrodynamics is discussed.
The calculation of new corrections in the energy spectrum of muonic atoms acquires a special
urgency.
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Among the various electromagnetic interactions, the processes of two-photon meson pro-
duction take a special place. They have been studied experimentally for quite a long time (see
for a review [4]). With the development of the quark model and nonperturbative methods of
quantum chromodynamics, such reactions, as well as the reverse decay processes of mesons
into two photons, were constantly in the field of intensive theoretical studies. New interest
in γ + γ → meson processes is connected with their possible role as a new source of inter-
actions between leptons and nucleons (see Fig. 1). The first estimates of the contribution of
effective meson exchanges in muonic hydrogen, which have already appeared, show that this
contribution can be significant [5–10].

In our previous papers [9, 10] we have investigated the role of effective exchanges of axial
vector and pseudoscalar mesons for the position of the energy levels in muonic hydrogen. In
this study we extend our analysis to the case of the lightest scalar σ(550) meson. So, the
numerical calculation of corresponding shifts in fine and hyperfine structure of muonic atoms
looks as an important task which can shed light on the proton charge radius puzzle.

2 Muon hydrogen potential via the σ-meson exchange

The amplitude of the one-meson exchange between the muon and the proton arises as a result
of the transition of two virtual photons into a scalar meson. The vertex function describing
this process plays a central role in the study of meson exchange, since a good prediction of
the magnitude of the shift in energy levels depends primarily on it. For the muon hydrogen
the σ-meson exchange potential (Fig. 1) is given in momentum space as [11]

Vσ(q) =
(
2Ek 2Ek′ 2Ep 2Ep′

)−1/2 [
ū(k′) Γσµµ(q2) u(k)

]
∆σ (q)

[
N(p′) ΓσNN(q2) N(p)

]
, (1)

where k, k′ (p, p′) are incoming and outgoing muon (proton) momenta, q = k′ − k = p − p′

is the momentum transfer, ∆σ (q) is the σ meson propagator, and Γσµµ, ΓσNN is the σ meson
vertex functions with muon and proton, respectively.

p p′

k k′k + l

l l − q

Figure 1. Muon-proton interaction induced by scalar meson exchange.

For the mass and width of the σ-meson we take

mσ = 0.5 GeV, Γσ = 0.33 GeV, (2)

which is approximately an average of the experimental values obtained at Fermilab E791 [12]
and CLEO collaborations [13].



To take into account the off-shellness effect we use for the ΓσNN(q2) vertex a monopole
parametrization

ΓσNN(q2) = gσNN FσNN(q2), FσNN(q2) =
Λ2
σNN − m2

σ

Λ2
σNN − q2

, (3)

motivated by the models of the nucleon-nucleon interaction [11] with gσNN = 9±1, ΛσNN = 2
GeV [11, 14].

To express the exchange of the wide σ-meson of mass mσ and width Γσ, we do the
following modification of the propagator for the zero-width pole term [15–19]

1
m2
σ − q2 → ∆σ

(
q2

)
≡ 1

m2
σ − q2 − imσΓσ f

(
q2) = ∫ ∞

4m2
π

dλ
ρσ (λ)
λ − q2 , (4)

where

f
(
q2

)
=

(
q2 − 4m2

π

m2
σ − 4m2

π

)1/2

and the spectral density is

ρσ (λ) =
1
π

γσ
(
λ − 4m2

π

)1/2(
λ − m2

σ

)2
+ γ2
σ

(
λ − 4m2

π

) , γσ =
mσΓσ(

m2
σ − 4m2

π

)1/2 . (5)

Here, Γσ denotes the width for decay of the wide σ-meson into 2π state. The density ρ (σ)
can be interpreted as the mass squared density distribution of the σ meson, having the proper
threshold (two-pion mass squared), normalization, and width. Further, the exact propagator
∆σ (4) is then well approximated by the sum of two-pole approximation of stable mesons
[17–19]

∆σ
(
q2

)
≈ A1

m2
1 − q2

+
A2

m2
2 − q2

. (6)

By fitting left hand side by parametrization of right hand side we find the values of parameters
as

m1 = 0.407 GeV, A1 = 0.356,
m2 = 0.985 GeV, A2 = 0.644.

Finally, the σµµ vertex (see Fig. 1) is

Γσµµ(q2) = α2mµgσγγFσµµ(q2), (7)

with the σ-meson-muon form factor being [8]

Fσµµ(q2) =
4

q2 − 4m2
µ

∫
d4l
iπ2

{
Aσγγ

 1
l2
−

(
2m2
µ + (l, l − q)

)
(l, l − q)

l2 (l − q)2
(
(k + l)2 − m2

µ

)  (8)

−1
2

Bσγγq2

1 − (l, l − q)
(k + l)2 − m2

µ

},
where A and B are two scalar form factors depending on meson q2 and photon q2

1 = l2, q2
2 =

(l − q)2 virtualities that define the σγγ vertex [8, 20]

Γ
σγγ
µν

(
q2; q2

1, q
2
2

)
= Aσγγ

(
q2; q2

1, q
2
2

) (
gµνq1q2 − q1νq2µ

)
(9)

+ Bσγγ
(
q2; q2

1, q
2
2

) (
q2

1q2µ − q1q2q1µ

) (
q2

2q1ν − q1q2q2ν

)
.



The dispersion representation of the form factor Fσµµ(q2) is (Bσγγ does not contribute to this
formula)

Fσµµ
(
q2

)
= Fσµµ +

q2

π

∫ ∞

0
ds

ImFσµµ (s)
s
(
s − q2) , (10)

with

ImFσµµ(s) =
π

β
ln

1 − β
1 + β

, β =

√
1 −

4m2
µ

s
, (11)

and the subtraction constant

Fσµµ ≡ Fσµµ (0) = 3
(
ln ξ2 − 1

2
+

∫ ∞

0
dt ln t

∂Aσγγ (t, t)
∂t

)
(12)

+ 2ξ2
[
∂Aσγγ (t, t)
∂t

∣∣∣∣∣∣
t=0

(
2 ln ξ2 − 2

3

)
+ 2

∫ ∞

0
dt ln t

∂2Aσγγ (t, t)
∂2t

]
+ O

(
ξ4

)
,

where we introduced the small expansion parameter ξ2 = m2
µ/Λ

2
σγγ. The σγγ coupling enter-

ing (7) is related to the σ→ γγ partial width [21]

gσγγ =

√
4Γσγγ
πα2m3

σ

. (13)

Using Γσγγ = 2.05 keV [22], one gets gσγγ = 0.63 GeV−1. For Aσγγ we assume simple
expressions motivated by the vector meson dominance models

A(1)
σγγ

(
q2

1, q
2
2

)
=

Λ2
σγγ

Λ2
σγγ − q2

1 − q2
2

, A(2)
σγγ

(
q2

1, q
2
2

)
=

Λ4
σγγ(

Λ2
σγγ − q2

1

) (
Λ2
σγγ − q2

2

) , (14)

with Λ2
σγγ = 0.6 GeV2. The first form factor is in agreement with QCD asymptotics, while

the second one is often used in experimental studies. Then we get for the subtraction constant
in (10)

F(1)
σµµ = −

[
3 ln

(
2ξ2

)
+ 8ξ2

(
ln

(
2ξ2

)
+

2
3

)]
+ O

(
ξ4

)
≈ 10.34, (15)

F(2)
σµµ = −

[
3 ln ξ2 +

3
2
+ 8ξ2

(
ln

(
ξ2

)
+

7
6

)]
+ O

(
ξ4

)
≈ 10.84.

We see, that due to large logarithm contributions ln
(
ξ2

)
, there is almost no sensitivity to the

choice of σγγ form factor in (14).
The next step is the essential one in the Breit potential derivation: we perform the semirel-

ativistic expansion q2 ≈ −q2, q2
1,2 ≈ −Q2

1,2. In doing the expansion of (1), we shall neglect
the dependence of the denominator on the photon energy, i.e., neglect retardation effects

Vσ(q) = λσFσNN(−q2)
[
Fσµµ −

q2

π

∫ ∞

0
ds

ImFσµµ (s)
s
(
s + q2) ] ∑

i=1,2

Ai

m2
i + q2

(16)

with
λσ = α

2mµgσγγgσNN .

By using the algebraic relation

1
q2 + A

1
q2 + B

=
1

B − A

(
1

q2 + A
− 1

q2 + B

)
,



it is easy to transform (16) to the form linear in 1/
(
q2 + A

)
with its Fourier transform

1
q2 + a2

F.t.
=⇒ 1

4π
1
r

e−ar. (17)

If we restrict ourself for the moment by the leading contribution(
Λ2
σNN → ∞, ImFσµµ (s)→ 0

)
V (0)
σ (q) = λσFσµµ (0)

∑
i=1,2

Ai

m2
i + q2

,

the coordinate-space potential will be

V (0)
σ (r) =

λσ
4π

Fσµµ
∑
i=1,2

Ai
1
r

e−mir. (18)

Averaging (18) over the wave functions of 1S-, 2S- and 2P-states by using⟨
1S

∣∣∣∣∣1r e−mir
∣∣∣∣∣ 1S

⟩
=

4ww̃2
i

(1 + 2w̃i)
2 ,

⟨
2S

∣∣∣∣∣1r e−mir
∣∣∣∣∣ 2S

⟩
=
ww̃2

i

(
2 + w̃2

i

)
4 (1 + w̃i)

4 , (19)⟨
2P

∣∣∣∣∣1r e−mir
∣∣∣∣∣ 2P

⟩
=

ww̃4
i

4 (1 + w̃i)
4 , (20)

where mr = mNmµ/
(
mN + mµ

)
, w = αmr, w̃i = w/mi, we obtain the energy shifts

E(0)
σ (1S ) = −λσ

π
Fσµµ

∑
i=1,2

Ai
ww̃2

i

(1 + 2w̃i)
2 ,

E(0)
σ (2S ) = − λσ

16π
Fσµµ

∑
i=1,2

Ai

ww̃2
(
2 + w̃2

i

)
(1 + w̃i)

4 , (21)

E(0)
σ (2P) =

λσ
16π

∑
i=1,2

Ai

Fσµµ − m2
i

4m2
µ

(
1 +

4
3
w̃i +

1
2
w̃2

i

)
F̃σµµ

 ww̃4
i

(1 + w̃i)
4 , (22)

where

F̃(2)
σµµ = −

[
3
2
+ 2ξ2

(
ln ξ2 +

5
3

)]
.

Two expressions (21), (22) give contributions which are different in sign just as in the case of
pseudoscalar meson. The result for the lowest levels is

∆E1S = −0.110 meV,
∆E2S = −0.014 meV,

∆E2P = 2.6 · 10−8 meV,

They contribute to the Lamb shift (2P - 2S)

∆EσLambShift(2P-2S) = 0.014 meV.

3 Conclusion
Our result for σ-meson is in agreement with previously obtained estimates in [8, 23]. The ob-
tained contributions of scalar mesons to the Lamb shift (2P-2S) in muonic hydrogen are large
and should be used for precise comparison with experimental data of CREMA collaboration
[1, 2].
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