Comment on the $X(3915)$ nonstandard hadron candidate

Stephen Lars Olsen ${ }^{1, *}$
${ }^{1}$ University of Chinese Academy of Science, Beijing 100049, CHINA

Abstract

I review the experimental evidence for the $X(3915)$, the candidate nonstandard meson associated with $\omega J / \psi$ resonance-like peaks in $B \rightarrow K \omega J / \psi$ and $\gamma \gamma \rightarrow \omega J / \psi$ near $M(\omega J / \psi)=3920 \mathrm{MeV}$, and address the conjecture that it can be identified as the $\chi_{c 2}^{\prime}$, the radial excitation of the $\chi_{c 2}$ charmonium state. Since the partial decay width for $B \rightarrow K X(3915)$ is at least an order-ofmagnitude higher than that for $B \rightarrow K \chi_{c 2}$, its assignment as the $\chi_{c 2}^{\prime}$ is dubious.

1 Introduction

A number of meson candidates, dubbed the $X Y Z$ mesons, that contain charmed-quark anticharmed-quark ($c \bar{c}$) pairs but do not match expectations for any of the unassigned levels of the $[c \bar{c}]$ charmonium meson spectrum, have been observed in recent experiments [1]. In some cases, the distinction between the new states that are nonstandard hadrons and conventional charmonium mesons remains controversial.

This is especially the case for the $X(3915)$ that was first observed by Belle [2] and confirmed by BaBar [3, 4] as a near-threshold peak in the $\omega J / \psi$ invariant mass distribution in exclusive $B \rightarrow K \omega J / \psi$ decays (see Fig. 1a). An $\omega J / \psi$ mass peak with similar mass and width was seen in the two-photon fusion process $\gamma \gamma \rightarrow \omega J / \psi$, again by both Belle [5] and BaBar [6] (see Fig. 1b); BaBar reported its $J^{P C}$ to be 0^{++}. The similar masses and widths of the peaks seen in the two production modes suggest that these are being produced a single state (i.e., the X (3915)). The Particle Data Group's (PDG) average values for the mass and width measurements from both production channels are [7]:

$$
\begin{equation*}
M(X(3915))=3918.4 \pm 1.9 \mathrm{MeV} \text { and } \Gamma(X(3915))=20.0 \pm 5.0 \mathrm{MeV} \tag{1}
\end{equation*}
$$

and the product branching fraction for $X(3915)$ production in B^{+}meson decays is

$$
\begin{equation*}
\mathcal{B}\left(B^{+} \rightarrow K^{+} X(3915)\right) \times \mathcal{B}(X \rightarrow \omega J / \psi)=3.0 \pm 0.9 \times 10^{-5} \tag{2}
\end{equation*}
$$

The measured $\gamma \gamma \rightarrow \omega J / \psi$ production rates are used to extract the ($J^{P C}$-dependent) widths:

$$
\begin{equation*}
\Gamma_{\gamma \gamma}(X(3915)) \times \mathcal{B}(X \rightarrow \omega J / \psi)=54 \pm 9 \mathrm{eV}\left(0^{++}\right) \text {or } 11.4 \pm 2.7 \mathrm{eV}\left(2^{++}\right) \tag{3}
\end{equation*}
$$

[^0]

Figure 1. a) The $\omega J / \psi$ invariant mass spectrum for $B \rightarrow K \omega J / \psi$ decays from (top) Belle [2] and (bottom) Babar [4]. The low mass peak in the BaBar data is attributed to $X(3872) \rightarrow \omega J / \psi$ (see inset); the higher mass peak is the $X(3915) \rightarrow \omega J / \psi$ signal. The Belle analysis did not consider the possible presence of an $X(3872) \rightarrow \omega J / \psi$ signal. b) The $\omega J / \psi$ mass spectrum for $\gamma \gamma \rightarrow \omega J / \psi$ from (top) Belle [5] and (bottom) Babar [6].

2 The $X(3915)$ is not the $\chi_{c 0}^{\prime}$ charmonium state?

The Babar group's $J^{P C}$ determination was based on an analysis of angular correlations amongst the final-state particles in their $\gamma \gamma \rightarrow \omega J / \psi$ event sample [6]. The important angles for distinguishing $J=2^{+}$from $J=0^{ \pm}$are θ_{n}^{*}, the angle between $\overrightarrow{\mathrm{n}}$, the normal to the $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay plane, and the $\gamma \gamma$ axis in the omega rest frame, and θ_{ln}, the angle between $\overrightarrow{\mathrm{n}}$ and the direction of the ℓ^{+}from $J / \psi \rightarrow \ell^{+} \ell^{-}$decay (see Fig. 2a). Figure 2 b shows the $\mathrm{BaBar} \cos \theta_{\mathrm{n}}^{*}$ distribution together with the expectation for $J=0^{ \pm}$as a solid red line and $J=2^{+}$as a dashed blue curve. There is a strong χ^{2} penalty for the near-zero event likelihood near $\cos \theta_{\mathrm{n}}^{*}= \pm 1$ for the $J=2^{+}$hypothesis to fluctuate upward to the observed levels of ~ 8 and ~ 9 events, and this is the main support BaBar's $J=0$ conclusion. The $J=2$ hypothesis seems to fit the BaBar $\cos \theta_{\text {ln }}$ distribution (see Fig. 2c) better than that for $J=0$. But in this case, the likelihood of ~ 6 expected events near $\cos \theta_{\ln }= \pm 1$ to fluctuate downward to the observed $\simeq 2$ events is not so improbable. With $J=0$ established, the $0^{+} v s .0^{-}$discrimination mostly relies on the angle θ_{n}, which is the angle between the ω 's flight path and $\overrightarrow{\mathrm{n}}$ in the $\omega J / \psi$ restframe. The BaBar $\cos \theta_{\mathrm{n}}$ distribution shown in Fig. 2 d favors 0^{+}over 0^{-}, mostly because of the $\simeq 10$ events near $\cos \theta_{\mathrm{n}}=+1$, where the 0^{-}expectation is zero.

BaBar's $J^{P C}=0^{++}$assignment led them to suggest it as a suitable candidate for the $2^{3} P_{0}$ charmonium state, commonly known as the $\chi_{c 0}^{\prime}$, and it was listed as such in the 2014 PDG tables [8]. However, this assignment had some problems and was challenged for a number of reasons [9]: the partial width for $X(3915) \rightarrow \omega J / \psi$, which would be an OZI-suppressed decay mode for a charmonium state, was too large; the lack of evidence for $X(3915) \rightarrow D \bar{D}$, which would be the dominant mode for the $\chi_{c 0}^{\prime}$; and the small, $\simeq 9 \mathrm{MeV}$, mass splitting between the $\chi_{c 2}^{\prime}$ and the $X(3915)$, which is an order-of-magnitude lower than the smallest theoretical estimates for $M_{\chi_{c 2}^{\prime}}-M_{\chi_{c 0}^{\prime}}[10,11]$. This assignment was finally put to rest in 2017 by Belle, when they reported the observation of the $X^{*}(3860)$, a $D \bar{D}$ resonance with mass $3862_{-35}^{+47} \mathrm{MeV}$ in $e^{+} e^{-} \rightarrow J / \psi D \bar{D}$ annhilations with preferred spin-parity of 0^{++}[12]. These properties, particularly the strong $D \bar{D}$ decay mode, match well the expectations for the $\chi_{c 0}^{\prime}$, and the $X^{*}(3862)$ is clearly a much stronger candidate for this state than the $X(3915)$.

Figure 2. a) Directions used in the BaBar study of $\gamma \gamma \rightarrow \omega J / \psi$, where $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $J / \psi \rightarrow \ell^{+} \ell^{-}$. b) Comparison of the $\cos \theta_{\mathrm{n}}^{*}$ distribution with $J^{P}=0^{ \pm}$(solid red) and 2^{+}(dashed blue) expectations. c) The corresponding plot for $\cos \theta_{\mathrm{ln}} . \mathbf{d}$) The $\cos \theta_{\mathrm{n}}$ distribution with expectations for 0^{+}in solid red and 0^{-}in dashed blue. (From ref. [6].)

3 Is it the $\chi_{c 2}^{\prime}$ charmonium state?

The $\chi_{c 2}^{\prime}$ was first spotted by Belle [13] and subequently confirmed by BaBar [14] as a prominent $M(D \bar{D})$ peak in the two-photon fusion process $\gamma \gamma \rightarrow D \bar{D}$ that has a distinct $\sin ^{4} \theta^{*}$ production angle dependence that is characteristic of a $J=2$ state. The mass and width [7]:

$$
\begin{equation*}
M\left(\chi_{c 2}^{\prime}\right)=3927.2 \pm 2.6 \mathrm{MeV} \text { and } \Gamma\left(\chi_{c 2}^{\prime}\right)=24.0 \pm 6.0 \mathrm{MeV} \tag{4}
\end{equation*}
$$

are consistent with charmonium expectations for the $\chi_{c 2}^{\prime}$ and there are no reasons to question this assignment. The Belle (BaBar) $M(D \bar{D})$ and $d N / d\left|\cos \theta^{*}\right|$ distributions are shown in Fig. 3a (b). Belle and BaBar measurements of its two-photon production rate are also in good agreement and are characterized by the product

$$
\begin{equation*}
\Gamma_{\gamma \gamma}\left(\chi_{c 2}^{\prime}\right) \times \mathcal{B}\left(\chi_{c 2}^{\prime} \rightarrow D \bar{D}\right)=210 \pm 40 \mathrm{eV} \tag{5}
\end{equation*}
$$

Figure 3. a) left: The $M(D \bar{D})$ distribution for $\gamma \gamma \rightarrow D \bar{D}$. The open histogram the D mass-sideband-determined background. The solid (dashed) curve shows results of a fit that includes (excludes) a $\chi_{c 2}^{\prime}$ signal. right: $d N / d\left|\cos \theta^{*}\right|$ for peak-region events with a solid (dashed) curve showing $J=2(J=0)$ expectations. The histogram is the non-resonant contribution. (From ref. [13].) b) Corresponding plots from BaBar [14].

BaBar's $J^{P C}=0^{++}$assignment for the $X(3915)$ was based on a comparison to a 2^{++} scenario that only considered a helicity- 2 component $\left(h_{2}\right)$ and ignored the possibility of any helicity- 0 contribution. This assumption of "helicity- 2 dominance" originate from a theoretical analysis that found that in two-photon production of tensor mesons, the helicity- 0 component $\left(h_{0}\right)$ is zero in the non-relativistic limit [15]. The authors of ref. [16] point out that in the case of charmonium, the suppression of helicity- 0 contributions only applies to mesons that are $100 \% c \bar{c}$, which is generally considered to be unlikely for charmonium mesons with masses above the $2 m_{D}$ open-charm threshold (see, e.g., ref. [17]).

This is important because if the $J^{P C}$ of the $X(3915)$ is 2^{++}, the mass peak identified with the $X(3915)$ could be conceivably be due to an $\omega J / \psi$ decay mode of the $\chi_{c 2}(2 P)$ charmonium
state. The dashed lines in Fig. 4a show the ref. [16] comparison of the Belle $M(D \bar{D})$ and $|\cos \theta|$ with an $h_{0} \simeq 1.5 h_{2}$ mixture to represent the $X(3915)$. Figure 4 b) shows BaBar's $\cos \theta_{\mathrm{n}}^{*}$ and $\cos \theta_{\text {ln }}$ distributions with expectations for 0^{++}, and 2^{++}with $h=0 \& h=2$. With the inclusion of some $h=0$ contribution, the χ^{2} distinction between 0^{++}and 2^{++}angular distributions is diminished and the authors conclude that the $X(3915)$ could be a $\chi_{c 2}^{\prime}$ state that contains a sizable non- $c \bar{c}$ component.

Figure 4. a) Belle $M(D \bar{D})$ (left) and $\left|\cos \theta^{*}\right|$ (right) distributions for $\gamma \gamma \rightarrow D \bar{D}$ production. The solid (dashed) curves show expectations for $h_{0}=0\left(h_{0}=1.5 h_{2}\right)$. b) BaBar $\cos \theta_{\mathrm{n}}^{*}$ distribution (left) with a solid (dotted) curve showing expectations for 2^{++}with $h=0(h=2)$; the dashed curve is for 0^{++}. (right) The $\cos \theta_{\text {ln }}$ distribution with a solid curve for 2^{++}with $h=0$ or 2 , and a dashed curve for 0^{++}. (From ref. [16].)

3.1 Other aspects of the $X(3915)=\chi_{c 2}^{\prime}$ assignment

In addition to violating helicity- 2 dominance, which ref. [16] claims may not be a problem, there are other concerns with the $X(3915)=\chi_{c 2}^{\prime}$ assignment. These are briefly discussed here.

3.1.1 Mass and width differences

Belle and BaBar measurements of the $\gamma \gamma \rightarrow \omega J / \psi$ mass peak, 3915 ± 4 and $3919 \pm 3 \mathrm{MeV}$, respectively, are both lower, by $\simeq 2 \sigma$, than their respective $\chi_{c 2}^{\prime} \rightarrow D \bar{D}$ mass peak measurements, 3929 ± 5 and $3927 \pm 3 \mathrm{MeV}$. Since the measurements reference well known masses ω and J / ψ for the $X(3915)$ and D-meson for the $\chi_{c 2}^{\prime}-$ systematic effects are small.

On the other hand, a recent LHCb report on the $M(D \bar{D})$ distribution for inclusive D-meson pair production in high energy proton-proton collisions included observation of a distinct peak in the $\chi_{c 2}^{\prime}$ mass region, shown in Fig. 5a, with mass $M=3921.9 \pm 0.6 \pm 0.2 \mathrm{MeV}, 2 \sigma$ below the $\chi_{c 2}^{\prime}$ value listed in eqn. 4 [18]. The reported width, $\Gamma=36.6 \pm 1.9 \pm 0.9 \mathrm{MeV}$, is 2σ higher than the eqn. 4 value. The LHCb group attributes this peak to the $\chi_{c 2}^{\prime}$.

Figure 5 b shows recent BESIII $M(\omega J / \psi)$ results for $e^{+} e^{-} \rightarrow Y(4220) \rightarrow \gamma \omega J / \psi$, where there is a strong $X(3872) \rightarrow \omega J / \psi$ signal and 3σ "evidence" for two higher mass peaks [19]. The fitted mass of the middle peak is $M=3926.4 \pm 2.5 \mathrm{MeV}$, near the Belle and BaBar results for $\chi_{c 2}^{\prime} \rightarrow D \bar{D}$. Thus, the current situation with mass measurements is inconclusive.

3.1.2 A large OZI-violating $\omega J / \psi$ decay width for a $[c \bar{c}]$ meson

With the $\Gamma_{\gamma \gamma} \times \mathcal{B}$ values listed in eqns. 3 and 5, the $\chi_{c 2}^{\prime}$ assignment implies that

$$
\begin{equation*}
\frac{\mathcal{B}\left(\chi_{c 2}^{\prime} \rightarrow \omega J / \psi\right)}{\mathcal{B}\left(\chi_{c 2}^{\prime} \rightarrow D \bar{D}\right)}=0.05 \pm 0.02 \tag{6}
\end{equation*}
$$

which is large for an OZI-rule-violating decay of an above-open-charm-threshold charmonium state, and more than an order-of-magnitude higher than the measured corresponding

Figure 5. a) The $M\left(D^{+} D^{-}\right)$distribution for inclusive D-meson pair production at the LHCb. The peak at 3842 MeV is the first observation of the ψ_{3}, the $1^{3} D_{3}$ charmonium level. The broader peak near 3920 MeV is attributed by the LHCb group to the $\chi_{c 2}^{\prime}$ [18]. b) The $M(\omega J / \psi)$ distribution for $e^{+} e^{-} \rightarrow Y(4220) \rightarrow \omega J / \psi$ events from BESIII. An $X(3872) \rightarrow \omega J / \psi$ signal is evident. Additional peaks near 3925 MeV and 3960 MeV each have about 3σ significance [19]. c) $B^{+} \rightarrow K^{+} \chi_{c 1}$ and $K^{+} \chi_{c 2}$ signals from the full Belle data set [20].
ratio for $\psi^{\prime \prime} \rightarrow \pi^{+} \pi^{-} J / \psi$ and $D \bar{D}$. If $\chi_{c 2}^{\prime} \rightarrow D \bar{D}$ and $D \bar{D}^{*}$ are the dominant decay modes and $\Gamma_{\chi_{c 2}^{\prime}}\left(D \bar{D}^{*}\right) \approx \Gamma_{\chi_{c 2}^{\prime}}(D \bar{D})$ (as predicted in ref. [21]), then $\Gamma_{\chi_{c 2}^{\prime}}(\omega J / \psi)>200 \mathrm{keV}$ (at the $\sim 90 \%$ CL), and much larger than any measured OZI-violating width for a charmonium state.

3.1.3 $\mathcal{B}\left(B \rightarrow K \chi_{c 2}^{\prime}\right) \gg \mathcal{B}\left(B \rightarrow K \chi_{c 2}\right)$?

In 2011, with their full event sample accumulated over ten years, Belle reported $\sim 3 \sigma$ evidence for $B^{+} \rightarrow K^{+} \chi_{c 2}$ based on the 33 ± 11 event signal shown in Fig. 5c [20]. The inferred branching fraction, $\mathcal{B}\left(B^{+} \rightarrow K^{+} \chi_{c 2}\right)=1.1 \pm 0.4 \times 10^{-5}$, is smaller that the product branching fraction for $X(3915) \rightarrow \omega J / \psi$ production in B^{+}meson decays (eqn. 2). Since $\mathcal{B}\left(\chi_{c 2}^{\prime} \rightarrow D \bar{D}\right)$ cannot exceed unity, eqn. 6 implies $\mathcal{B}\left(\chi_{c 2}^{\prime} \rightarrow \omega J / \psi\right)<0.08$ ($90 \% \mathrm{CL}$). Thus, if the $X(3915)$ produced in $B \rightarrow K \omega J / \psi$ is the $\chi_{c 2}^{\prime}$, the B-meson decay width to $K^{+} \chi_{c 2}^{\prime}$ would be more than an order of magnitude larger than that to $K^{+} \chi_{c 2}$. This contradicts theoretical expectations that $B \rightarrow K[c \bar{c}]$ decay widths decrease with increasing radial [c $\bar{c}]$ quantum numbers [22].

Suppression of $B \rightarrow K \chi_{c 2}^{\left({ }^{\prime}\right)}$ is not unexpected. The primary mechanism for B-meson ($\bar{b} q$) decays to $K[c \bar{c}]$ final states is $\bar{b} \rightarrow \bar{c}$ plus a virtual W^{+}that, in turn, materializes as $c \bar{s}$. The final-state c - and \bar{c}-quark form the $[\bar{c} \bar{c}]$ state and the \bar{s} - and "spectator" q-quark form the K. This process is only allowed for $J^{P C}=0^{-+}, 1^{--}$and $1^{++}[c \bar{c}]$ states, decays to $[c \bar{c}]$ states with other $J^{P C}$ values are higher-order and expected to be "factorization suppressed" [23]. The Belle results on $B \rightarrow K \chi_{c 2}$ shown in Fig. 5c demonstrate that for $J^{P C}=2^{++}[c \bar{c}]$ states, factorization suppression is very effective: $\mathcal{B}\left(B \rightarrow K_{\chi_{c 2}}\right)<0.04 \times \mathcal{B}\left(B \rightarrow K \chi_{c 1}\right)(90 \% \mathrm{CL})$.

4 Summary and conclusions

Despite its observation by different experiments in a variety of production channels, the nature of the $X(3915)$ remains a mystery. If it is a nonstandard $X Y Z$ meson, it cannot be easily interpreted by any of the proposed models for these states. For example: its mass is too low for a QCD-hybrid [24], and not near an appropriate threshold for a molecular state or a cusp effect [25]; the lack of evidence for a $\eta \eta_{c}$ decay mode [26] is problematic for a diquarkdiantiquark assignmment [27]. Thus, if it is an $X Y Z$ meson, it is a very interesting one.

The sum total of existing data on $\omega J / \psi$ and $D \bar{D}$ production in the $\sim 3925 \mathrm{MeV}$ mass region cannot be explained as being simply due to the $\chi_{c 2}^{\prime}$ charmonium state. While a (tenuous) case could be made that the near- 3925 MeV mass peaks seen by the LHCb in $p p \rightarrow D \bar{D} X$, Belle and BaBar in $\gamma \gamma \rightarrow \omega J / \psi \& D \bar{D}$ and BESIII in $Y(4220) \rightarrow \gamma \omega J / \psi$ are all due to decays of the $\chi_{c 2}^{\prime}$, the existing evidence is not conclusive. Moreover, a very strong case can be made against a $\chi_{c 2}^{\prime}$ interpretation of the $\omega J / \psi$ peak seen in $B \rightarrow K \omega J / \psi$ decays.

More refined mass and width measurements are needed, and reliable, separate $J^{P C}$ determinations for the $\omega J / \psi$ peaks produced via $\gamma \gamma$ fusion, radiative $Y(4220)$ transitions, and B-meson decays that eschew the helicity- 2 dominance constraint are essential. The LHCb group has demonstrated that they can isolate clean $B^{+} \rightarrow K^{+} \omega J / \psi$ signals with good efficiency [28] and I look forward to high-statistics results from them in the near future.

5 Acknowledgements

I congratulate Phi-to-Psi-2018 organizers for an interesting and provocative meeting. This work is supported by the CAS President's International Fellowship Initiative.

References

[1] S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018), 1708.04012
[2] K. Abe et al. (Belle), Phys. Rev. Lett. 94, 182002 (2005), hep-ex/0408126
[3] B. Aubert et al. (BaBar), Phys. Rev. Lett. 101, 082001 (2008), 0711.2047
[4] P. del Amo Sanchez et al. (BaBar), Phys. Rev. D82, 011101 (2010), 1005.5190
[5] S. Uehara et al. (Belle), Phys. Rev. Lett. 104, 092001 (2010), 0912.4451
[6] J.P. Lees et al. (BaBar), Phys. Rev. D86, 072002 (2012), 1207. 2651
[7] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 030001 (2018)
[8] K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014)
[9] F.K. Guo, U.G. Meissner, Phys. Rev. D86, 091501 (2012), 1208.1134
[10] H. Wang, Y. Yang, J. Ping, Eur. Phys. J. A50, 76 (2014)
[11] S.L. Olsen, Phys. Rev. D91, 057501 (2015), 1410.6534
[12] K. Chilikin et al. (Belle), Phys. Rev. D95, 112003 (2017), 1704.01872
[13] S. Uehara et al. (Belle), Phys. Rev. Lett. 96, 082003 (2006), hep-ex/0512035
[14] B. Aubert et al. (BaBar), Phys. Rev. D81, 092003 (2010), 1002.0281
[15] M. Krammer, H. Krasemann, Phys. Lett. 73B, 58 (1978)
[16] Z.Y. Zhou, Z. Xiao, H.Q. Zhou, Phys. Rev. Lett. 115, 022001 (2015), 1501.00879
[17] M.R. Pennington, D.J. Wilson, Phys. Rev. D76, 077502 (2007), 0704.3384
[18] R. Aaij et al. (LHCb) (2019), 1903. 12240
[19] M. Ablikim et al. (BESIII) (2019), 1903.04695
[20] V. Bhardwaj et al. (Belle), Phys. Rev. Lett. 107, 091803 (2011), 1105.0177
[21] T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D72, 054026 (2005), hep-ph/0505002
[22] G.T. Bodwin et al., Phys. Rev. D46, R3703 (1992), hep-ph/9208254
[23] M. Beneke et al., Phys. Rev. Lett. 83, 1914 (1999), hep-ph/9905312
[24] L. Liu et al. (Hadron Spectrum), JHEP 07, 126 (2012), 1204.5425
[25] S.L. Olsen, EPJ Web Conf. 202, 01003 (2019), 1812. 10947
[26] A. Vinokurova et al. (Belle), JHEP 06, 132 (2015), [Erratum: JHEP02,088(2017)], 1501.06351
[27] R.F. Lebed, A.D. Polosa, Phys. Rev. D93, 094024 (2016), 1602.08421
[28] G. Andreassi, Ph.D. thesis, University of Rome, Sapienza (2014)

[^0]: *e-mail: solsensnu@gmail.com

