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Abstract. The precision measurement of the anomalous magnetic moment
g − 2 of the muon at present exhibits a 3.5 σ deviation between theory and
experiments. In the next few years it will be measured to higher precisions at
Fermilab and J-PARC. The theoretical prediction can be improved by reducing
the uncertainty on the leading hadronic correction aHLO

µ to the g − 2. Here we
present a new approach to determine aHLO

µ with space-like data, by means of a
precise measurement of the hadronic contribution to the effective electromag-
netic coupling α, exploiting the elastic scattering of 150 GeV muons (currently
available at CERN North area) on atomic electrons of a low-Z target. The direct
measurement of aHLO

µ in the space-like region will provide a new independent
determination and will consolidate the theoretical prediction of the muon g − 2
in the Standard Model. It will allow therefore a firmer interpretation of the
measurements of the future muon g − 2 experiments at Fermilab and J-PARC.

1 Introduction

The discrepancy between the experimental value of the muon anomalous magnetic mo-
ment aµ = (g − 2)/2 and the Standard Model (SM) prediction, ∆aµ ∼ (28 ± 8) × 10−10 is
a long standing issue in particle physics [1, 2]. The current accuracy of the SM predic-
tions, ∼ 5 × 10−10, are limited by strong interaction effects, at the low energy scale implied.
However by using analyticity and unitarity, it was shown [3] that the leading-order (LO)
hadronic contribution to the muon g-2, aHLO

µ , can be computed via a dispersion integral of
the hadron production cross section in e+e− annihilation at low-energy. The present error on
aHLO
µ , ∼ 4 × 10−10 or slightly better, with a relative accuracy of 0.6%, constitutes the main

uncertainty of the SM prediction [2]. Alternative evaluations of aHLO
µ can be obtained with

QCD lattice calculations [4]. The current lattice QCD results are not yet competitive with the
dispersive approach via time-like data, with errors that are expected to decrease significantly
in the next few years [5]. The O(α3) hadronic light-by-light contribution, aHLbL

µ , which has
the second largest error in the theoretical evaluation, contributing with an uncertainty of (2.5–
4)×10−10, cannot at present be determined from data and its calculation relies on the use of
specific models [6–8].

The error achieved by the BNL E821 experiment [9], δaExp
µ = 6.3× 10−10 , corresponding

to 0.54 ppm, is dominated by the available statistics. New experiments at Fermilab and J-
PARC, aiming at measuring the muon g-2 to a precision of 1.6 × 10−10 (0.14 ppm), are in
preparation [10, 11].
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Together with the experimental plans, an improvement on the value of the LO hadronic
contribution is highly desirable. The proposal described here is to determine aHLO

µ from a
measurement of the effective electromagnetic coupling α in the space-like region, where the
vacuum polarization is expectd to be a smooth function of the squared momentum transfer. In
this approach the hadronic contribution to the running of α can be measured by means of the
t-channel µ− e elastic scattering process, from which aHLO

µ can be determined directly [12] 1.

2 Measuring the Hadronic Leading contribution with space-like
data.

For the calculation of the hadronic leading contribution aHLO
µ with the t-channel approach an

alternative formula to the dispersion integral [3, 16] can be exploited [13, 17], namely:

aHLO
µ =

α

π

∫ 1

0
dx (1 − x) ∆αhad[t(x)] , (1)

where ∆αhad(t) is the hadronic contribution to the running of the fine-structure constant, eval-
uated at

t(x) =
x2m2

µ

x − 1
< 0, (2)

that is the space-like (negative) squared four-momentum transfer of the process. In contrast
with the dispersive integral, the integrand of Eq. (1) is a smooth functin and free of resonance
poles. Fig. 1 (left) shows ∆αhad, and for comparison ∆αlep, as a function of the variables
x and t. The range x ∈ (0, 1) corresponds to t ∈ (−∞, 0), with x = 0 for t = 0. The
expected integrand of Eq. (1), calculated with the routine hadr5n12 [18], which uses time-
like hadroproduction data and perturbative QCD, is plotted in Fig. 1 (right). The peak of the
integrand occurs at xpeak ' 0.914 (corresponding to tpeak ' −0.108 GeV2) and ∆αhad(tpeak) '
7.86 × 10−4 (see Fig. 1 (right)).

We propose to use Eq. (1) to determine aHLO
µ by measuring the running of α using the

CERN muon beam of energy Eµ = 150 GeV, colliding on electron at rest of a fixed target.
This technique is similar to the one used for the measurement of the pion form factor, as
described in [19].
It looks very appealing for the following reasons:

• It is a t-channel process, making the dependence on t of the differential cross section pro-
portional to |α(t)/α(0)|2:

dσ
dt

=
dσ0

dt

∣∣∣∣∣ α(t)
α(0)

∣∣∣∣∣2 , (3)

where dσ0/dt is the effective Born cross section, including virtual and soft photons, anal-
ogously to Ref. [20], where small-angle Bhabha scattering at high energy was considered.
The vacuum polarization effect, in the leading photon t-channel exchange, is incorporated
in the running of α and gives rise to the factor |α(t)/α(0)|2.

• Given the incoming muon energy Eµ the t variable is related to the energy of the scattered
electron E′e or its angle θe through:

t = (pµ − p′µ)2 = (pe − p′e)2 = 2m2
e − 2meE′e, (4)

s = (p′µ + p′e)2 = (pµ + pe)2 = m2
µ + m2

e + 2meEµ, (5)

1The method has been originally proposed [13] by using Bhabha scattering data. A method to determine the
running of α by using small-angle Bhabha scattering was proposed in [14] and applied to LEP data in [15].
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Figure 1. Left: ∆αhad[t(x)] × 104 (red) and, for comparison, ∆αlep[t(x)] × 104 (blue), as a function of
x and t (upper scale). Right: the integrand (1 − x)∆αhad[t(x)] × 105 as a function of x and t. The peak
value is at xpeak ' 0.914, corresponding to tpeak ' −0.108 GeV2.
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Figure 2. The relation between the muon and electron scattering angles for 150 GeV incident muon
beam momentum. Blue triangles indicate reference values of the Feynman’s x and electron energy.

E′e = me
1 + r2 cos2 θe

1 − r2 cos2 θe
, θe = arccos

1
r

√
E′e − me

E′e + me

 , (6)

where the angle θe spans the range (0–31.85) mrad for the electron energy E′e in the range
(1–139.8) GeV.



• For Eµ = 150 GeV, it turns out that s ' 0.164 GeV2 and −0.143 GeV2 < t < 0 GeV2. It
implies that the region of x extends up to 0.93, while the peak of the integrand function of
Eq. (1) is at xpeak = 0.914, corresponding to an electron scattering angle of 1.5 mrad, as
visible in Fig. 1 (right).

• The angles of the scattered electron and muon are correlated as shown in the Fig. 2, drawn
for incoming muon energy of 150 GeV. This constraint is extremely important to select
elastic scattering events, rejecting background events from radiative or inelastic processes
and to minimize systematic effects in the determination of t. Note that for scattering angles
of (2–3) mrad there is an ambiguity between the outgoing electron and muon, as their
angles and momenta are similar, to be resolved by means of µ/e discrimination.

• The boosted kinematics allows the same detector to cover the whole acceptance. Many
systematic errors, e.g. on the efficiency, will cancel out (at least at first order) in the relative
ratios of event counts in the high and low q2 regions (signal and normalization regions).

Assuming to use a muon beam of 150 GeV with an average intensity of ∼ 1.3 ×
107 muon/s, with a running time of 2 × 107 s/yr, and using 30 experimental points in x
(supplemented with large |t| contributions that can be derived from pQCD), we estimate the
statistical sensitivity of this experiment on the value of aHLO

µ to be ∼ 0.3%. Such a beam is
available at the CERN North Area.

3 Detection technique

The CERN muon beam M2 presents ideal characteristics to perform the measurement. The
beam intensity is in average of about 50 MHz. The whole material budget required to reach
the integrated luminosity and the required statistical precision in two years of data taking
must be order of 60 cm. In order to minimize multiple scattering and to have high radiation
length the target must be of low-Z material. The idea is to use a segmented target of 2 cm thin
layers, distributed in 30 identical modules. Each detection module has the length of 1 m, a
transverse surface of 10×10 cm2 and consists of a target of Beryllium coupled to three stations
of Silicon strip detector for tracking with high angular resolution (no magnetic field applied).
Fig. 3 shows the basic layout. As tracking elements we selected the 2S modules developed
by the CMS collaboration for their high luminosity upgrade, read by 16 CBC binary ASICs,
providing stubs (tracks segments) at 40 MHz. The hybrid transmits stubs through an optical
serial line using the GBT protocol at 5 Gb/s. The estimated data throughput of the entire
detector running at 40 MHz, with an average pileup of two, muons crossing the detector,
is estimated to be of the order of 0.5 Tb/s. To reduce the flux we are studying a tracking
trigger implemented with FPGAs. The expected signal rate is estimated to be of the order
of 5 kHz/module, amounting to 150 kHz in total. The event signature to search for consists
of a planar event with two tracks, matching in a common vertex, inside in the fiducial target
volume. For particle identification we plan to exploit tracking in the downstream modules
and calorimeter. They are required in order to solve the muon-electron ambiguity for electron
scattering angles around(2–3) mrad c f . Fig. 2). Studies of the detector, performed using
GEANT4, shows the intrinsic angular resolution is of ∼ 0.02 mrad. The detector acceptance
covers both the region of the signal, with the electron emitted at extremely forward angles
and high energies, and the so called normalization region, where the electron has much lower
energy (around 1 GeV) and an emission angle of 30 mrad. Due to the boosted kinematics of
the collisions, the detector covers most of the acceptance, and let all the scattering angles in
the laboratory system to be accessed by a single detector element.
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Figure 3. Scheme of a possible detector layout. (a) The detector is a modular system. Each module
consists of a low-Z target (Be or C) and three silicon tracking stations within the distance of 50 cm. (b)
To perform the µ-e discrimination in the case of small scattering angles (with both θµ and θe below 5
mrad) the detector is equipped with an electromagnetic calorimeter and a muon detector.

4 Considerations on systematic uncertainties

Significant contributions of the hadronic vacuum polarization to the µe → µe differential
cross section are essentially restricted to electron scattering angles below 10 mrad, corre-
sponding to electron energies above 10 GeV. The net effect of these contributions is to in-
crease the cross section by a few per mille. To get a relative precision below 1% in the
determination of aHLO

µ requires high statistics, a high level of control of systematic uncertain-
ties. Goal of experiment is equivalent to a determination of the differential cross section with
∼10 ppm systematic uncertainty at the peak of the integrand function (c f . Fig. 1).

A crucial requirement is to keep the detection efficiency highly uniform over the entire
q2 range and over all the detector components. This motivates the choice of a purely angular
measurement: an acceptance of tens of mrad can be covered with a single sensor of modern
silicon detectors, positioned at a distance of about one meter from the target.

A requirement for reaching very high accuracy is to measure all the relevant contributions
to systematic uncertainties from the data themselves. An important effect is the multiple scat-
tering. It breaks the muon-electron two-body angular correlation, moving events out of the
kinematic line in the 2D plot of Fig. 2. In addition, multiple scattering causes acoplanarity,
while two-body events are planar, within the resolution. These facts allow effects to be mod-
elled and measured by using data.



Another imporant requirement is measuring very preciselly the muon maen beam energy.
By reverting the two body elastic scattering kinematics we can reach the precision of few
MeV. It implies the need to control the longitudinal positions of the sensors stations to 10-
100 µm.

We aim to control stematic effects within the experiment itself. In this respect the pro-
posed modularity of the apparatus will help. Test with jus couple of modules planned at
CERN in 2021 could provide a proof-of-concept of the proposed method.

5 Conclusions

The experiment MUonE presented to determine the leading hadronic contribution to the muon
g-2, by scattering high-energy muons on atomic electrons of a low-Z target through the pro-
cess µe→ µe, is primarily based on a precise measurement of the scattering angles of the two
outgoing particles as the q2 of the muon-electron interaction can be directly determined by the
electron (or muon) scattering angle. An advantage of the muon beam is the possibility of em-
ploying a modular apparatus, with the target subdivided in subsequent layers. A low-Z solid
target is preferred in order to provide the required event rate, limiting at the same time the
effect of multiple scattering as well as of other types of muon interactions (pair production,
bremsstrahlung and nuclear interactions). The normalization of the cross section is provided
by the very same µe → µe process in the low-q2 region, where the effect of the hadronic
corrections on α(t) is negligible. Such a simple and robust technique has the potential to keep
systematic effects under control, aiming at reaching a systematic uncertainty of the same or-
der as the statistical one. For this purpose a preliminary detector layout has been described.
On the theoretical side, the radiative corrections at NNLO accuracy have to be considered in
full detail and a Monte Carlo event generator able to match fixed order NNLO predictions
with resummation given by the Parton Shower technique is needed. By considering a beam
of 150 GeV muons with an average intensity of ∼ 1.3×107 muon/s, currently available at the
CERN North Area, a statistical uncertainty of ∼ 0.3% can be achieved on aHLO

µ in two years
of data taking. A test performed using a single detector module, exploiting the muon beam
facility, could provide a validation of the proposed method.
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