Cooling performances of the Collector Ring

Oleksiy Dolinskyy (GSI) IWAPT at FAIR

November 17th, 2015, BINP (Novosibirsk)

FAIR

FAIR layout of accelerators

Beams for the CR

RIBs from SFRS: 200 π mm mrad; $\Delta p/p=3\%$; $t_b=50$ ns

Antiprotons from pbar-sep.: 240 π mm*mrad; $\Delta p/p=6\%$; $t_b=50$ ns

Ions from SIS18: 50 π mm mrad, $\Delta p/p=10^{-3}$; $t_b=100$ ns

The main task of the CR

Fast pre-cooling of the hot ion beams coming from separators at the maximum magnetic rigidity of BR=13 Tm.

Mass measurements in the CR

Isochronous mode ($\gamma_{tr} = \gamma$) is required for fast mass measurements. Methods: TOF, Schottky spectroscopy

RIBs from SFRS: 100 π mm*mrad; $\Delta p/p=1\%$; $t_b=50$ ns

Layout of the CR

The CR layout is optimized to have optimal Stochastic Cooling (SC) system for both antiproton and rare isotope beams.

The specific ring parameters have been adjusted specially for SC system.

(gamma-tr, phase advances, beta-functions, dispersion, position in ring).

Layout of the CR

The CR operation cycle

- Injection using full aperture kicker magnets
- RF bunch rotation + de-bunching
- Stochastic cooling
- RF re-bunching
- Extraction to the HESR

No accelaration, no decelerations. Operation at the constant Bp=13 Tm.

Challenges and design criteria for RF cavities

GEMEINSCHAFT

First of Series debuncher at GSI

GEMEINSCHAFT

Challenges and design criteria for Stochastic Cooling

From the CERN/Fermilab experience→ Cooling of pbars is very demanding! From the ESR/GSI experience→ Very fast cooling of hot RIBs is challenging!

CR Stochastic Cooling System

Filter cooling PU (1-2 GHz)

The CR is designed to have required η parameter both for antiprotons and RIBs. Optics and positions of PU and KI are designed for the required dispersion & phase advances between all pairs of PU-KI. The size of all beams must be smaller than the specified internal apertures of the electrodes at PU/KI.

Slotline PU vacuum tanks: cryogenic + plunging challenges

linear motor drive units for synchronous movement of the electrode double-modules

electrode modules sliding along flexible Ag/BeCu sheets cooled by cryoheads at 20-30 K

intermediate gold-plated cryoshield at 80 K

Stochastic cooling for CR at GSI

Au/Cu cryoshield at 80 K

Cooling process study

After CR optics optimization for antiproton $(from \eta=-0.011 \text{ to } \eta=+0.011)$ the Cooling Process is recalculated, where three processes are considered in a chain:

- 1. RF bunch rotation + de-bunching
- 2. Stochastic cooling
- 3. RF re-bunching

1.bunch manipulation (rotation + re-bunching)

bunch rotation

Simulations of T.Katayma (2015)

2. Stochastic cooling

momentum spread evolution

Number of PU and kicker electrodes:	128
PU & kicker vertical gap:	120 mm
Kicker & PU shunt impedance :	45/11.25 Ohm
Band:	1-2 GHz
Gain :	144, 147 and 150 dB

Ring parameter: $\eta = 0.011$

LMHOLTZ

GEMEINSCHAFT

3. re-bunching process

Performance of beam cooling in the CR

	10 ⁸ Antiprotons E=3 GeV		10 ⁸ Heavy ions E=740 MeV/u	
	δp/p (rms)	$\epsilon_{h,v}$ (rms) [π mm mrad]	δp/p (rms)	$\epsilon_{h,v}$ (rms) [π mm mrad]
At injection	1.75 %	40	0.6 %	35
After bunch manipulations	0.27 %	40	0.2 %	35
After cooling	0.05 %	1.25	0.025 %	0.125
After re-bunching (at extraction)	0.1 % (TDR) 0.07% ?	1.25	0.05 %	0.125
Cycle time	10 s		1.5 s	

Matching to the HESR

The HESR Stochastic cooling acceptance: $\Delta p/p$ (rms) < 6 x 10⁻⁴.For CR optics with eta =-0.011 (TDR): $\Delta p/p$ (rms) = 10 x 10⁻⁴Due to this mismatching pbars can be lost by 30 %For new CR p-bar optics with eta=+0.011 $\Delta p/p$ (rms) = 7 x 10⁻⁴

There are 2 ideas how to improve cooling performance of the CR

- 1. Optics variation during cooling process. The eta-parameter is increased by a factor of 3, that helps SC to have better mixing condition. $\Delta p/p$ can be reduced by a factor of 2.
- 2. The $\Delta p/p$ of injected beam in the HESR could be further reduced, roughly by a factor of 2 through the de-bunching process with use of barrier bucket cavity system in the HESR.

Takeshi Katayama has made preliminary studies of both ideas.

Stochastic cooling with variable CR optics

momentum spread evolution

T.Katayama's simulations

GEMEINSCHAFT

Required ramping rate of quadrupoles dB/dt=0.35 T/s

η variation from 0.014 to 0.033

Microwave mode damping

Around the ring (Experience ESR): ceramic tubes with resistive coating distributed in 12 positions around the ring inside vacuum chambers to damp unwanted microwave modes.

 \rightarrow keep in mind when designing CR magnets/chambers!

 $\boldsymbol{\rightarrow}$ choice by testing during stoch. cooling commissioning in CR

At PU/KI: must include ferrites, resistive coated tubes or other lossy material in the tank/electrode concept (tests, RF simulations).

Palmer PU (CERN and GSI experience): need electrode box full with ferrite

Large apertures→more modes→need moredamping

Microwave mode damping material necessary for stochastic cooling

Summary

- The CR is designed for fast cooling of hot secondary beams coming from separators
- The beam cooling in the longitudinal phase space is performed by two steps: 1. RF bunch rotation; 2. Stochastic Cooling
- The beam cooling in the transverse phase space is performed only by Stochastic Cooling
- The CR operates as a cooler at the static regime at Bp=13 Tm.
- The cooling cycle of: heavy ions 1.5 s; antiprotons 10 s.
- At Extraction from the CR: the $\Delta p/p$ (rms): of pbars = 0.07 0.1 % of heavy ions = 0.05 %
- The Δp/p matching to the HESR requires Δp/p < 0.06 %. There are ideas how to improve cooling performances of the CR, which are under considerations.
- Stochastic cooling CANNOT work without microwave mode damping in the CR. Large CR apertures, many modes need strong damping.

