

Fair

Dr. Aleksey Adonin

Linac & Operations – Ion Sources, GSI

BINP, Novosibirsk

IWAPT at FAIR Workshop

16. November 2015

GSI facility

Aleksey Adonin

GSI facility

High Current Injector

2.2 keV/u

Injection requirements into RFQ (UNILAC):

- Specific Energy:
- MAX Mass to Charge (A/ ζ):
- Space-charge limit RFQ:
- Acceptance RFQ:

65 0.25 × Α/ζ [mA]

 $\varepsilon_{x,y} = 138\pi \text{ mm} \cdot \text{mrad}$

Aleksey Adonin

"International Workshop on Antiproton Physics and Technology at FAIR"

Motivation

Problems of HSI operation with light ion beams

- Low applied U_{ext} (E = 2.2 keV/u) => limited I_{ext} from ion source
- No focusing in post-acceleration system ($U_{PA} = 0$)
- Big transversal emittance => very low transmission through HSI
- Critical for proton beams

Motivation

Possible solution

- H-rich molecular heavy ion beam (M/Q) up to 60)
- Accelerated up to 1.4 MeV/u
- Cracked on the gas stripper => high intensity proton beam

Aleksey Adonin

Selection of candidates

Η

Desired requirements:

- Operation with volume type ion source (MUCIS, CHORDIS)
- Heavy molecule: $Q = 1 \implies 10 a.u. < M < 60 a.u.$
- High content of H-atoms
- Comply with safety requirements (non-toxic, non-corrosive)

Alkane

<u>Methane</u>	Ethane	Propane	<u>Butane</u>	
CH₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	
M=16	M=30	M=44	M=58	

First experiments

CHORDIS

Cold or Hot Reflex Discharge Ion Source

- Optimized for singly-charged ions
- 20 SmCo-Magnets (1.8 Tesla)
- 1x6 Filaments: W (up to 220 A)
- Longer lifetime
- Emission Current Density: 130 mA/cm²

MUCIS

Multi Cusp Ion Source

- Universal
- 60 SmCo-Magnets (1.8 Tesla)
- 2x3 Filaments:
- Duty Cycle:

- - Ta (up to 190 A)
 - 5 Hz / 1 ms

0.1 T

- Emission Current Density: 150 mA/cm²
- Solenoid:

Aleksey Adonin

First experiments

CHORDIS

Cold or Hot Reflex Discharge Ion Source

- Optimized for singly-charged ions
- . 20 SmCo-Magnets (1.8 Tesla)
- Ix6 Filaments: W (up to 220 A)
- Longer lifetime
- Emission Current Density: 130 mA/cm²

Multi Cusp Ion Source

MUCIS

- Universal
- 60 SmCo-Magnets (1.8 Tesla)
- 2x3 Filaments:
- Duty Cycle:

- Ta (up to 190 A)
- 5 Hz / 1 ms

0.1 T

- Emission Current Density: 150 mA/cm²
- Solenoid:

Aleksey Adonin

Aleksey Adonin

GSI

Results

Aleksey Adonin

"International Workshop on Antiproton Physics and Technology at FAIR"

8/18

Results

				$C_2H_3^+$ $C_2H_4^+$	
	Working substance	Desired ion	Ion mass	Maximum achieved at GUL5DT8	
	Methane CH₄ - gas	CH₃⁺	15	3.5 mA	
	Ethane C ₂ H ₆ - gas	C₂H₄⁺	28	2.5 mA	and the second sec
	Propane C ₃ H ₈ - gas	C ₃ H ₇ ⁺	43	1.0 mA	
Second Se	Isobutane C ₄ H ₁₀ - gas	C ₃ H ₇ ⁺	43	1.2 mA	+
	Iodoethane C ₂ H ₅ I - volatile liquid	C₂H₅⁺	29	~ 0.1 mA	
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Hall Voltage (V)					

ion Beam Current (arbit. units)

Aleksey Adonin

Contamination of IS with carbon

Plasma chamber

Extraction system

- Sparking in the extraction system
- Reduced durability and lifetime of the heating filaments
- A full service of the ion source with cleaning of the plasma chamber is required after 1 week operation

Filaments

Aleksey Adonin

UNILAC proton performance (2014)

<u>Recent Results</u>: 4 mA proton beam behind Alvarez 1 out of C₃H₇⁺ molecular beam (Sep. 2015)

Aleksey Adonin "International Workshop on Antiproton Physics and Technology at FAIR"

FAIR

Emittance measurements

Production of C-beam

Spectrum behind the Gas stripper

13/18

High energy operation

"International Workshop on Antiproton Physics and Technology at FAIR"

FAIR

appel	p-LINAC	UNILAC		
S.API	Design	Measurement Extr		Extrapolation
E [MeV]	70	11.4	20	20
I [mA]	35	2	2	3
E _{x,y phys.} 4·rms [mm·mrad]	7/8	7/8	3/3	3/3
E _{x,y norm.} 4·rms [mm·mrad]	2.9/3.4	1.1/1.3	0.6/0.6	0.6/0.6
SIS18 MTI output (N)	5.8e12	8.2e11	9.7e11	1.5e12
Space charge limit (N)	5.8e12	8.7e11	1.5e12	1.5e12
SIS100 output (particles/cycle)	1.8e13	2.4e12	2.9e12	4.5e12
SIS100 output (relative)	100%	13.0%	16.0%	25.0%
Reference: W.Barth et. al., Phys. Rev. ST Accel. Beams 18, 050102 - Published 18 May 2015				

Post acceleration of UNILAC p-beam GSJI.

W.Barth

W. Barth, Injector Upgrade for FAIR, ICST, Worms/Germany (2014)

CH-cavity prototype for p-LINAC (to be tested 2015)

Beam Diagnostic Test Bench (since 2008)

no. of gaps	13 + 14 = 27
frequency [MHz]	325.2
energy range [MeV]	11.7 - 24.3
beam loading [kW]	882.6
heat loss [MW]	1.35
total power [MW]	2.2
Q ₀ -value	15300
effective shunt impedance $[M\Omega/m]$	60
average E ₀ T [MV/m]	6.4 - 5.8
Kilpatrick factor	2.0
coupling constant [%]	0.3
aperture [mm]	20
total inner length [mm]	2800

		Dump
Wo	rkshop on Antiproton Physics and Technology at FAIR"	16 / 18

Aleksey Adonin

"International W

GEST Post acceleration of UNILAC p-beam

Conclusions & Outlook

Highlights:

- Production of brilliant p-beam avoiding HSI problems with light ions
- World intensity record for proton beams from heavy ion accelerator
 8.2.10¹¹ protons per pulse (almost 20 times higher than prev. record)
- Reached up to 25% of the FAIR design proton intensity with existing UNILAC facility (up to 1.5·10¹² protons per pulse extrapolated)
- Production of high current C-beam for parallel operation

<u>Outlook</u>:

- Further ion source development to improve performance
- Post acceleration of recently achieved 4 mA UNILAC p-beam in TK

Aleksey Adonin

Conclusions & Outlook

<u>Highlights</u>:

Production of brilliant p-beam avoiding HSI problems with light ions

- World intensity record for proton beams from heavy ion accelerator
 8.2.10¹¹ protons per pulse (almost 20 times higher than prev. record)
- Reached up to 25% of the FAIR design proton intensity with existing UNILA UNILA Спасибо 13а Внимание (Д.d)
- Production of high current C-beam for parallel operation

<u>Outlook</u>:

- Further ion source development to improve performance
- Post acceleration of recently achieved 4 mA UNILAC p-beam in TK