

INSTR20: Instrumentation for Colliding Beam Physics

Budker Institute of Nuclear Physics, and Novosibirsk State University, Novosibirsk, Russia 24 - 28 February, 2020

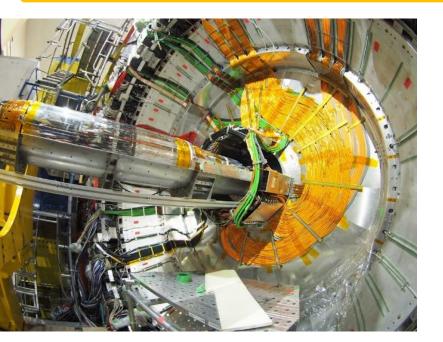
Data Quality Monitoring on the Silicon Vertex Detector at the Start of the Belle II Experiment

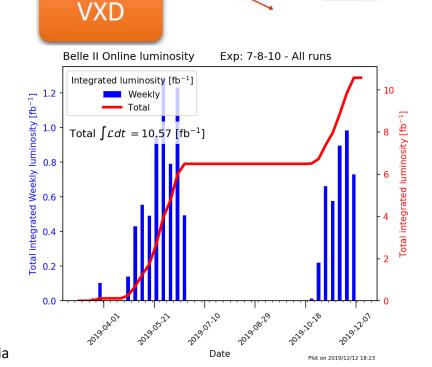
Peter Kodyš

Charles University, Prague, Czech Republic,
on behalf of the Belle II PXD, SVD, DAQ, DQM and software collaboration

- Full author list is at the end of the presentation -

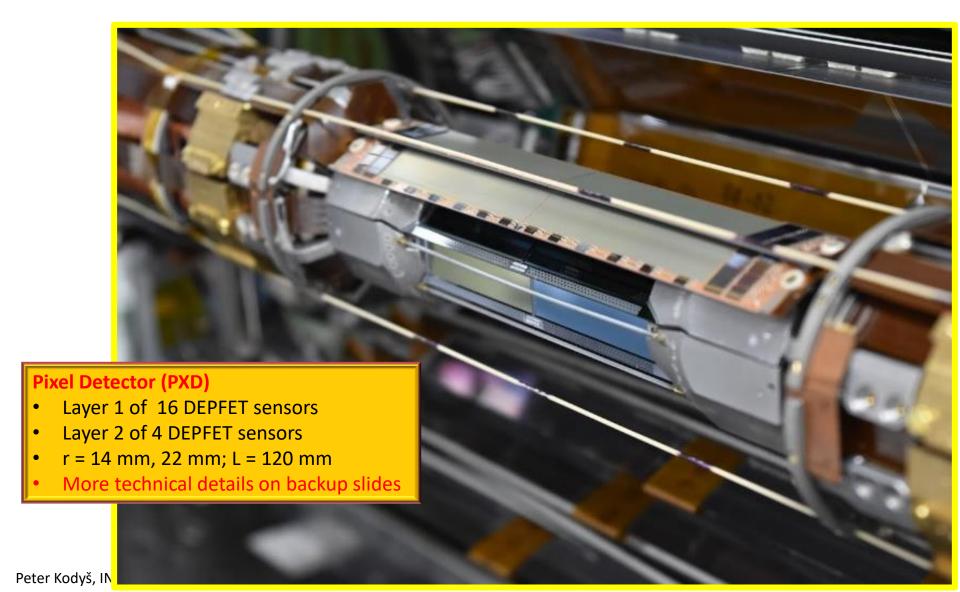
Belle II: General information


Belle II


~7.9 m

Belle II is a particle physics experiment based at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan.

It is a flavor factory running on the SuperKEKB accelerator, an asymmetric-energy e⁺e⁻ (4 on 7 GeV) collider with design luminosity 8×10³⁵ cm⁻²s⁻¹.

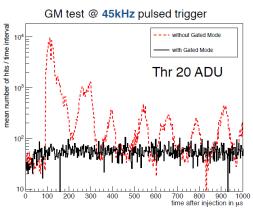

First physics data with full detector acquired in March 2019.

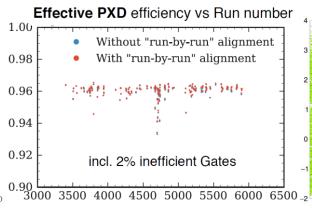
Belle II: VXD design details

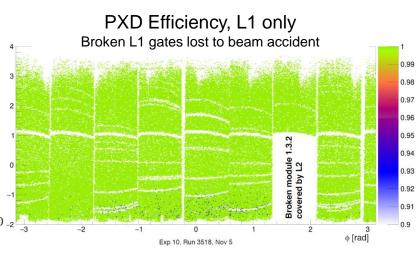
The central vertex and tracking detector of Belle II consists of 2 layers of pixel sensors (PXD), 4 layers of strip detectors (SVD), and a large wire chamber (CDC).

Belle II: VXD design details

The central vertex and tracking detector of Belle II consists of 2 layers of pixel sensors (PXD), 4 layers of strip detectors (SVD), and a large wire chamber (CDC).

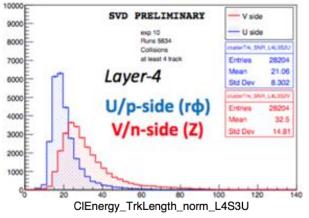



VXD operation: PXD

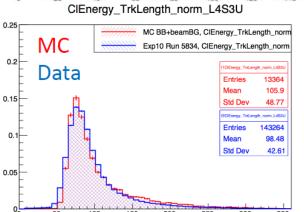

- The pixel detector currently consist of layer 1 and 4 sensors of layer 2.
- In the Fall 2019 period, PXD performed consistently well with efficiency over 98%.
- PXD functionality had to recover from a loss of modules due to operation accidents in spring 2019. Some affected areas of the detector have been dead ever since.
- PXD ROI selection successfully verified
- PXD gated mode operation has been tested in most modules.

<u>Gated mode</u> operation is a unique feature of DEPFET sensors that allows, during a short time interval, to make DEPFET pixels insensitive to incoming radiation. Pixels normally continue integrating charge. Yet, newly acquired charge is cleared and never reaches the internal gate. Thus <u>pixels keep the charge</u> acquired previously and the charge generated during the time interval is ignored.

ROIs (Regions of Interest) are areas on the PXD where SVD tracking predicts a high probability of a useful track hit. We use ROI prediction to decrease PXD event data size by order of magnitude.

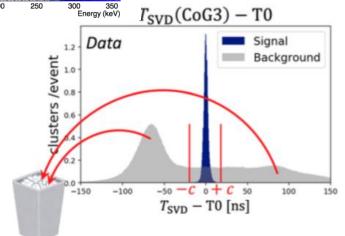


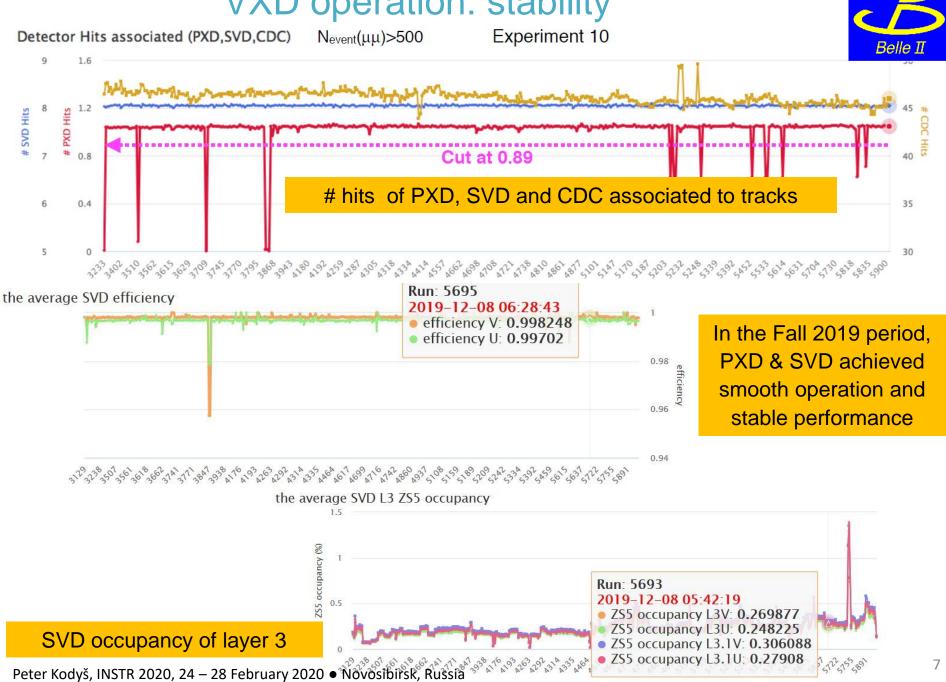
VXD operation: SVD


- The strip detector (SVD) was fully installed as designed.
- SVD was successfully commissioned in the first 2019 runs.
- Achieved smooth operation and stable performance: hit efficiency > 99.5%, SNR 15-30 in all sensors
- Detailed studies on hit position resolution and improvement of DATA/MC matching are ongoing
- SVD occupancy ~0.3% far from the limit of 2-3%
- To better cope with higher background expected in future years @ higher luminosity:
 - Excellent hit time resolution achieved ~3 ns
 will be exploited for background rejection
 - data reduction from 6 signal samples / hit to
 3 samples / hit

max. sum

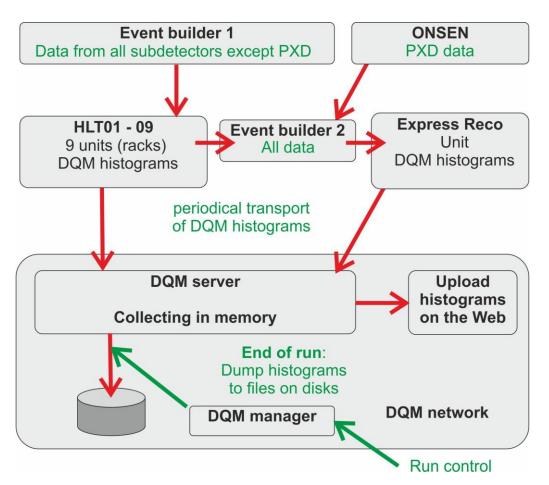
originally 6-sample


for Clusters on Tracks ZS3 U/V sides for L4.3.2



$$ext{SNR} = rac{\Sigma_i S_i}{\sqrt{\Sigma_i N_i^2}},$$

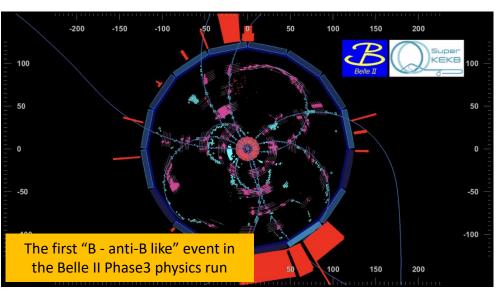
 S_i (N_i) are the signal (nosie) on i_{th} strip



VXD operation: stability

VXD data acquisition workflow

Data workflow for quality monitor of the PXD and SVD subdetectors. Red arrows represent data flows, green markings represent DQM.


- Periodically, more than 7500
 histograms are updated every ~2
 minutes. DQM bandwidth is up to 20-30 MB/s.
- Two sets of DQM histograms are created: from HLT 01-09 (low-level, timing, triggering etc.) and from Express Reco (detector and reconstruction-related).
- Express Reco creates histograms including PXD data.
- Only a subset of data is processed by Express Reco.
- Dumping of histograms is controlled by the DQM manager computer

DQM software: the Belle II basf2 framework

Online data monitors are used to confirm standard performance of subdetectors and identify any detector failure. This helps us to avoid significant data losses and achieve uniformly high data quality.

Also, the monitors confirm proper operation of slow- and run control, and data acquisition chain. They help to **identify acceptable runs** for further processing.

Data quality monitors use the Belle II
 basf2 framework for data simulation
 and analysis, running on a set of isolated
 computers with conservative update
 plan to keep stability of production.

- Use of jsroot for interactive access to the histograms.
- Connection to database and public network is forbidden, only local services are used.
- Data quality monitoring uses reconstruction in the basf2 software framework, up to vertex reconstruction
- Analysis up to decay reconstruction is running quasi online on the Express Reco node to check the functionality of full detector.
- Various histograms are accumulated in real time and are monitored by experimental shifters during operation.

DQM hardware requirements

- At the full luminosity of 8×10³⁵ cm⁻²s⁻¹, the **physics rate** is **4 kHz** for BBbar and Continuum events and 2 kHz for "low multiplicity" events.
- The expected average L1 trigger rate at the full luminosity is 30 kHz maximum, and it is supposed to be processed with 6400 cores. The required processing rate per core is ~3Hz resulting in the required average processing time per core and event to be ~0.3 sec.
- The physics rate estimation shows that at 3 Hz rate, 20% are from BBbar and Continuum, 10% from "low multiplicity" events, and the remaining 70% from other events including beam background radiation.
- The processing time for "low multiplicity" and "other" events is expected to be significantly less than that for hadronic (BBbar + Continuum) events.

If we assume the processing time per core for a hadronic event (20%) to be 1.0 sec and 0.1 sec for "low multi" and other events (80%), the average processing time per event could be 0.28 sec, which satisfies the 3 events/core/sec processing rate requirement.

Data quality online monitoring – HLT vs. Express Reco

Belle II

- The HLT cluster contains 9 units (racks) for parallel processing events. The Express Reco contains one unit and processes only a sample of events from the data stream.
- HLT and Express Reco produce histograms for online monitoring and presentation on the Web for remote shifters.
- PXD data bypass HLT. PXD histograms are available only from Express Reco.
- HLT and Express Reco reconstruction does not use calibrations from online database.

Belle II DQM Monitoring Pages

This is Belle II DQM monitoring page. Please refer to the following links for DQM monitor.

Live Histograms for Shifters

Histograms are shown interactively.

HLT histograms for shifters

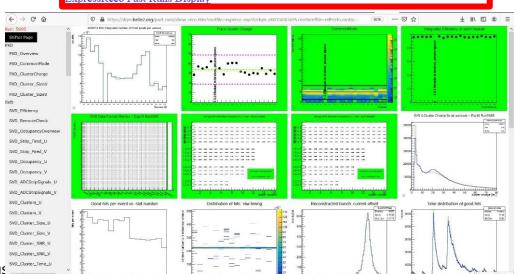
ExpressReco histograms for shifters

Live Histograms for Experts

Histograms are shown interactively.

HLT histograms for experts

ExpressReco histograms for experts

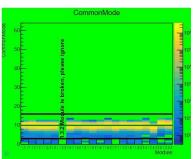

Online Display for Past Runs

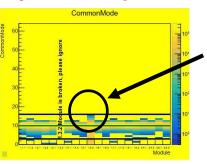
The following pages show the online display for past runs

For Experiment 8:

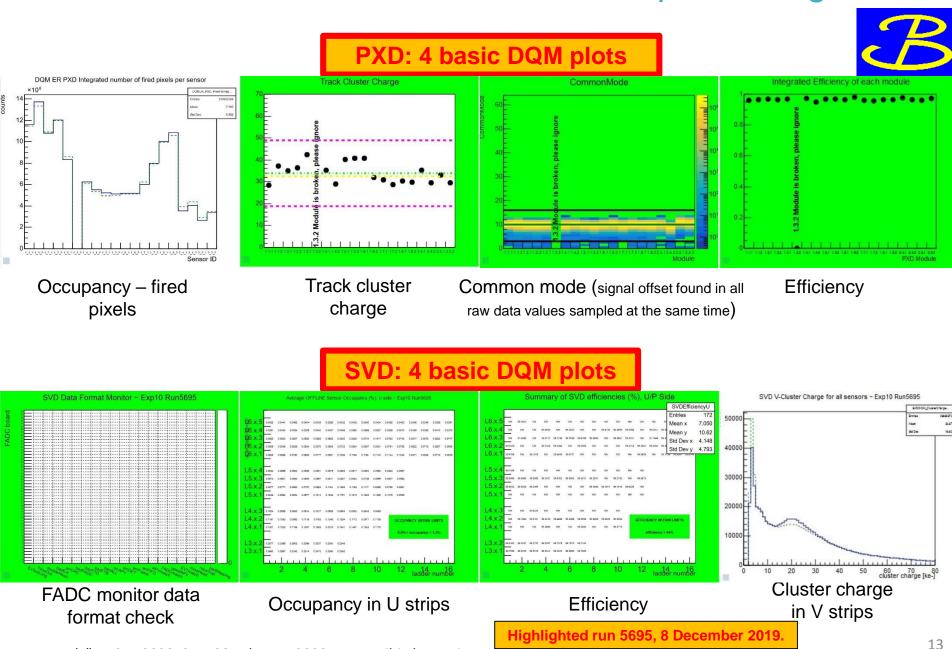
HLT Past Runs Display

ExpressReco Past Runs Display


Peter Kodyš, INSTR 2020, 24 – 28 February 2020 ● Novosibirsk, Rus


DQM: alerts, reference plots, diagnostics

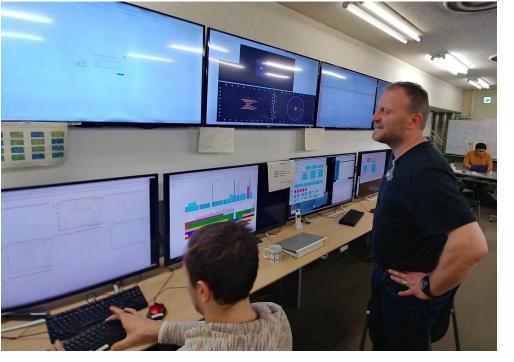
- The DQM system provides several hundred plots of various quantities.
- Mostly they are intended **for expert shifters** to diagnose sources of DAQ and detectors problems.


- A more limited set of plots is selected for monitoring by control room shifters so that they can spot problems quickly, even without expert knowledge about individual subdetectors.
- Automatic comparisons with reference data are provided together with colorcoded plot canvases indicating serious deviations from reference (green plot frame meaning no problem) so that problems can be spotted quickly among a large number of plots.
- In case of problems or unclear situations, CR shifter can alert expert detector shifters by a dedicated **chat channel**, **e-mail**, **or phone**.
- Any problems are logged, and shifters can subsequently label runs as OK or problematic.
- Shifters can also consult run-by-run comparisons of selected sets of variables.

DQM – conditions for alerts, reference plots, diagnostics

Peter Kodyš, INSTR 2020, 24 – 28 February 2020 ● Novosibirsk, Russia

VXD DAQ and DQM operation



- Both Event Builder 1 and Event Builder 2 are working stably.
- ZMQ-based processing parallelization (ZMQHLT) has been deployed in all HLT units.
 - The data flow is basically working stably
 - System control still undergoing improvements
- STOP ABORT LOAD START sequence solves most DAQ-related problems
- File transfer to disks from HLT units works stably.
- Express Reco / Event display

working without serious trouble.

- DQM units:
 - Histogram transport working stably.
 - Histogram browser working fine.

Conclusion

The coming spring Belle II run is mostly dedicated to 24/7 physics data taking, the stability of DAQ DQM is a critical issue.

Daily operation of the vertex detectors requires round-a-clock shifts at a considerable cost in terms of work time and management. Automation of DQM tasks can help to reduce this burden while maintaining a high level of data quality.

- PXD and SVD detectors perform well in acquisition of data usable for physics.
- Belle II operated successfully in full detector setup in 2019.
- DQM processing scheme works.
- Online monitors of data quality work and are being optimized for best usability.
- Data quality monitors follow incoming requests and progress in the DAQ system.
- List of monitored values for pixel and strip detectors have been and can be modified on request.
- Updating of DQM software and reference plots is conservative but not frozen.

Thank you for your attention, спасибо за внимание

Full author list

Peter Kodyš^{1,*}, Jesus Abudinen², Karlheinz Georg Ackermann³, Karol Mateusz Adamczyk⁴, Patrick Ahlburg⁵, Hiroaki Aihara⁶, Oscar Alonso⁷, Mohammed Albalawi⁸, Ladislav Andricek⁹, Rachid Ayad⁸, Tariq Aziz¹⁰, Varghese Babu¹¹, Szymon Grzegorz Bacher⁴, Seema Bahinipati¹², Giovanni Batignani¹³, Jerome Baudot¹⁴, Prafulla Kumar Behera¹⁵, Stefano Bettarini¹³, Tadeáš Bilka¹, Marca Boronat¹⁶, Andrzej Bozek⁴, Nils Braun¹⁷, Florian Buchsteiner¹⁸, Allen Caldwell³, Christian Camien¹¹, Giulia Casarosa¹³, Daniel Cervenkov¹, Vladimir Chekelian³, Yeqi Chen¹⁹, Luigi Corona¹³, Thomas Rafael Czank²⁰, Sanjeeda Bharati Das²¹, Nibedita Dash¹⁵, Gaetano de Marino¹³, Bruno Deschamps⁵, Angel Dieguez⁷, Jochen Dingfelder⁵, Zdeněk Doležal¹, Giulio Dujany¹⁴, Daniel Esperante¹⁶, Francesco Forti¹³, Markus Fras³, Ariane Frey²², Markus Friedl¹⁸, Juan Fuster¹⁶, Miroslav Gabriel³, Karsten Gadow¹¹, Eldar Ganiev², Uwe Gebauer²², Thomas Gessler²³, Georgios Giakoustidis⁵, Luigi Li Gioi³, Benigno Gobbo², Pablo Gomis López¹⁶, Daniel Greenwald²⁴, Yinghui Guan²⁵, Soumen Halder¹⁰, Koji Hara²⁶, Oskar Hartbrich²⁷, Sagar Hazra¹⁰, Martin Heck¹⁷, Tomasz Hemperek⁵, Martin Hensel⁹, Takeo Higuchi²⁰, Matthias Hoek²⁸, Stefan Huber²⁴, Ryosuke Itoh²⁶, Christian Irmler¹⁸, Akimasa Ishikawa²⁶, Hyebin Jeon²⁹, Changwoo Joo²⁰, Mateusz Kaleta⁴, Abdul Basith Kaliyar¹⁰, Jakub Kandra¹, Kookhyun Kang²⁹, Piotr Julian Kapusta⁴, Christian Kiesling³, Bartlomiej Kisielewski⁴, David Kittlinger³, Daniel Klose⁹, Christian Koffmane⁹, T. Kohriky²⁶, Tomoyuki Kono³⁰, Igor Konorov²⁴, Silvia Krivokuca⁹, Hans Krüger⁵, Thomas Kuhr³¹, Manish Kumar²¹, Rajeev Kumar³², Peter Kvasnička¹, Carlos Lacasta¹⁶, Chiara La Licata²⁰, Kavita Lalwani²¹, Livio Lanceri², Jens Sören Lange²³, Klemens Lautenbach²³, Seungcheol Lee²⁹, Ulrich Leis³, Philipp Leitl³, Dmytro Levit²⁴, Chunhua Li³³, Y. B. Li³⁴, James Frederick Libby¹⁵, Gerhard Liemann⁹, Qingyuan Liu35, Zhen'An Liu36, Thomas Lück31, Florian Luetticke5, Lydia Macharski11, Souvik Maity¹², Carlos Mariñas¹⁶, Sukant Narendra Mayekar¹⁰, Sara Mccarney³, Gagan Bihari Mohanty¹⁰, Johnny Alejandro Mora Grimaldo⁶, Tomoko Morii²⁰, Hans-Günther Moser³, David Moya³⁷, Felix Johannes Müller¹¹, Felix Müller³, Katsuro Nakamura²⁶, Mikihiko Nakao²⁶, Zbigniew Marian Natkaniec⁴, Carsten Niebuhr¹¹, Jelena Ninkovic⁹, Yoshiyuki Onuki⁶, Waclaw Ostrowicz⁴, Antonio Paladino¹³, Eugenio Paoloni¹³, Hwanbae Park²⁹, SeokHee Park³⁸, Botho Paschen⁵, Stephan Martin Paul²⁴, Ivan Peric¹⁷, Frauke Poblotzki¹¹, Andrei Rabusov²⁴, K. K. Rao¹⁰, Simon Reiter²³, Rainer Helmut Richter⁹, Isabelle Ripp-Baudot¹⁴, Martin Ritter³¹, Michael Ritzert³⁹, Giuliana Rizzo¹³, Niharika Rout¹⁵, Debashis Sahoo¹⁰, Javier Gonzalez, Sanchez³⁷, Luka Santelj⁴⁰, Nobuhiko Sato²⁶, Bianca Scavino²⁸, Gerhard Schaller⁹, Martina Schnecke⁹, Florian Schopper⁹, Harrison Schreeck²², Christoph Schwanda¹⁸, Benjamin Schwenker²², Reinhard Sedlmeyer⁹, Concettina Sfienti²⁸, Frank Simon³, Sebastian Skambraks⁹, Yuri Soloviev¹¹, Björn Spruck²⁸, Slavomira Stefková¹¹, Reimer Stever¹¹, Ulf Stolzenberg²², Soh Yamagata Suzuki²⁶, Maiko Takahashi¹¹, Eva Tafelmayer⁹, Shuji Tanaka²⁶, Hikaru Tanigawa⁶, Richard Thalmeier¹⁸, Toru Tsuboyama²⁶, Yuma Uematsu⁶, O. Verbycka⁴, Ivan Vila³⁷, Amparo Lopez Virto³⁷,

Lorenzo Vitale², Sven Vogt³, Marcel Vos¹⁶, Kun Wan⁶, Boqun Wang³, Shun Watanuki⁴¹, James Webb⁴², Norbert Wermes⁵, Christian Wessel⁵, Jarosław Pawet Wiechczyński¹³, Philipp Wieduwilt²², Hendrik Windel⁹, Satoru Yamada²⁶, Hua Ye¹¹, Hao Yin¹⁸, Laura Zani¹³, and Tingyu Zhang⁶ for the Belle II PXD, SVD, DAQ, DQM and software collaborations

Charles Univ. Prague, Czech Republic

²INFN and Univ. Trieste, Italy

3Max Planck Institut fur Physik Muenchen, Germany

⁴Institute of Nuclear Physics PAN, Poland

⁵Univ. of Bonn, Germany

6U-Tokyo, Japan

⁷University of Barcelona, Spain

⁸Univ. of Tabuk, Saudi Arabia

⁹Semiconductor Laboratory of the Max Planck Society, Germany

¹⁰Tata Institute of Fundamental Research, India

¹¹Deutsches Elektronen-Synchrotron(DESY), Germany

¹²Indian Institute of Technology Bhubaneswar, India

¹³INFN and Univ. Pisa, Italy

¹⁴Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg, France

¹⁵Indian Institute of Technology Madras, India

¹⁶Instituto de Fisica Corpuscular(IFIC), Spain

¹⁷Karlsruhe Institute of Technology(KIT), Germany

¹⁸Institute of High Energy Physics, Austrian Academy of Sciences, Austria

¹⁹Univ. of Science and Technology of China(USTC), China

²⁰Kavli IPMU (WPI), the University of Tokyo, Japan

²¹Malaviya National Institute of Technology Jaipur, India

²²Univ. of Goettingen, Germany

23 Univ. of Giessen, Germany

²⁴Technical Univ. of Munich(Technische Universitaet Muenchen), Germany

²⁵University of Cincinnati, U.S.A.

²⁶High Energy Accelerator Research Organization (KEK), Japan

²⁷Univ. of Hawaii, U.S.A.

²⁸Johannes Gutenberg Univ. of Mainz, Germany

²⁹Kyungpook National Univ.(KNU), South Korea

30 Kitasato University, Japan

³¹Ludwig Maximilians Univ. Muenchen(LMU), Germany

32Panjab Univ., India

33 LiaoNing Normal University(LNNU), China

34Peking Univ.(PKU), China

35Fudan Univ., China

36 Institute of High Energy Physics(IHEP), China

37 Instituto de Fisica de Cantabria, Spain

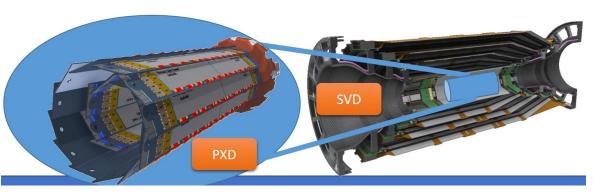
38 Yonsei Univ., South Korea

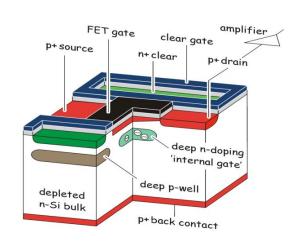
³⁹Heidelberg University, Germany

40 Univ. of Ljubljana, Slovenia

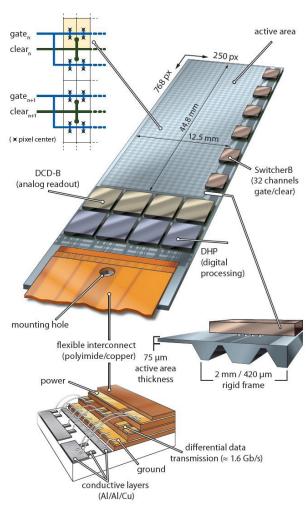
⁴¹Laboratoire de L'accelerateur Lineaire (LAL) Orsay, France

42Univ. of Melbourne, Australia




Backup slides

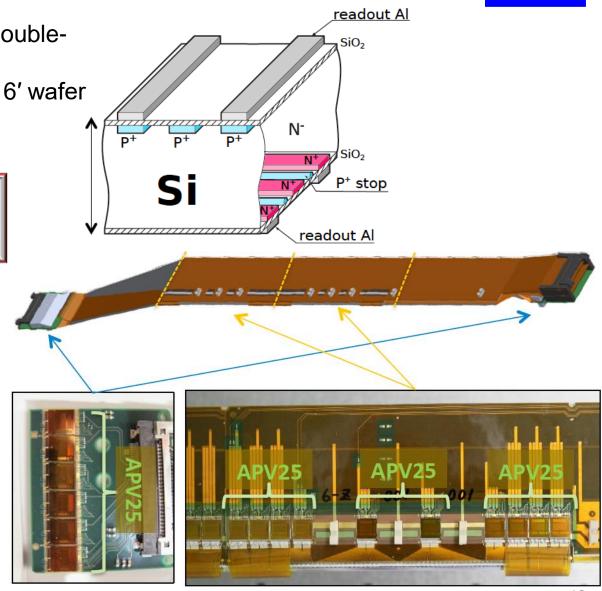
PXD: The DEPFET sensor and readout



The DEPFET technology of active pixel sensors is among the frontier detector concepts for high energy physics at high luminosities.

Belle II consist of: 40 PXD half ladders with 250 × 768 pixels each and 7.6 × 10⁶ pixels in total, expected occupancy up to 3%, at 30 kHz trigger rate, PXD produces 30 GB raw data per second.. Data volume is further reduced by a factor of 10.

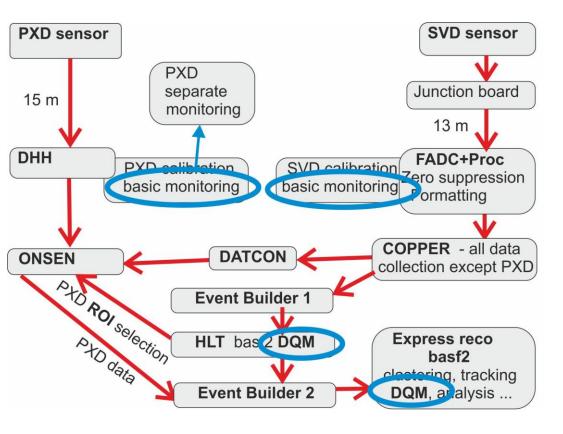
SVD sensor and readout


300-320 microns thick doublesided silicon microstrip detector (DSSD): p-in-n 6' wafer

APV25 chip: originally developed for CMS.

Shaping time: 50 ns

input channels: 128 per chip


- 192 cells deep analog pipeline for dead time reduction
- Thinned down to 100µm to minimize material budget
- Central DSSDs → 'Origami' chip-on-sensor design to reduce capacitive noise

VXD DAQ and Data Quality Monitoring

Details: DOI: https://doi.org/10.1016/j.nima.2018.09.003

Event builder 1 collects data from all subdetectors except PXD and sends it to the HLT (High Level Trigger) cluster for processing (histogramming)

PXD data follow a separate path **to Event Builder 2** to **merge** with the rest.

Event Builder 2 sends a sample of its data (so far 100%) to the **Express Reco cluster**, which is the central DQM processing unit.

Data flow (red arrows) for the Belle II vertex subdetectors. The blue markings show data quality monitoring modules.