A possible LHCb Luminosity Monitor based on the Muon System

Sofia Kotriakhova

LHCb experiment: the past

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $1.9 < \eta < 4.9$, designed for the study of m particles containing *b* or *c* quarks.

Trigger system: L0 hardware trigger & High Level Trigger (HLT)

LHCb experiment: the future

The most sensitive part upgraded:

- New vertex locator
- New silicon strip detector
- New scintillating fibre detector
- New Front-End electronics
- No hardware trigger

Muon system of LHCb detector

- The muon detector of the LHCb experiment consists of five stations, M1-M5 placed along the beam axis.
- Each station is divided into four regions, R1-R4, with increasing distance from the beam axis. The chambers are different in different regions.
- After the ongoing upgrade, muon system will be composed of 4 stations which comprise 1104 multi-wire-proportional-chambers (MWPC) with order of 100000 readout channels.

INSTR20

Muon front-end electronics

- CARDIAC readout board has 16 free-running scalers with preselectable gate
- The dead-time of the scalers is negligible compared with that of the CARDIAC
- Electronics deadtime depends on several parameters: C_{DET}, signal shape (i.e. ionization, gas gain...), and was estimated from direct measurements of particle rates

Rates of muon system

Correction of the deadtime inefficiency

The counting rate R^* of readout channel is: $R^* = R_{part}(1 - \delta_c R^*)$

where δ_c is the CARIOCA dead time and R_{part} is the rate of hitting particles.

The value of δ_c can be deduced from two measurements (R^*_i and R^*_j) performed at two different luminosities (L_i and L_j):

$$\begin{bmatrix} R_i^* = R_{\text{part}}^{(i)}(1 - \delta_c R_i^*) \\ R_j^* = R_{\text{part}}^{(j)}(1 - \delta_c R_j^*) \end{bmatrix}$$

For each readout channel the ratio ρ_{ij} , which can be evaluated from the experimental data

 $\rho_{ij} = 1 - \delta_c (1 - \beta_{ij}) R_j^*$

$$\rho_{ij} = \frac{R_j^*/L_j}{R_i^*/L_i}$$

We get

24.02.20

$$(\beta_{ij} = L_i/L_j < 1)$$

Correction of the deadtime inefficiency

ACCEPTED: February 18, 2016

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: February 3, 2016 PUBLISHED: April 6, 2016

Measurement of the front-end dead-time of the LHCb muon detector and evaluation of its contribution to the muon detection inefficiency

L. Anderlini,^a M. Anelli,^b F. Archilli,^c G. Auriemma,^{d,e} W. Baldini,^{c,f} G. Bencivenni,^b A. Bizzeti,^{a,g} V. Bocci,^d N. Bondar,^{c,h} W. Bonivento,ⁱ B. Bochin,^h C. Bozzi,^{c,f} D. Brundu,ⁱ S. Cadeddu,ⁱ P. Campana,^b G. Carboni,^{j,k} A. Cardini,ⁱ M. Carletti,^b L. Casu,ⁱ A. Chubykin,^h P. Ciambrone,^b E. Dané,^b P. De Simone,^b A. Falabella,^l G. Felici,^b M. Fiore,^{c,f,m} M. Fontana,ⁱ P. Fresch,^d E. Furfaro,^{j,k} G. Graziani,^a A. Kashchuk,^h S. Kotriakhova,^h A. Lai,ⁱ G. Lanfranchi,^b A. Loi,ⁱ O. Maev,^h G. Manca,ⁿ G. Martellotti,^d P. Neustroev,^h R.G.C. Oldeman,^{*i,o*} M. Palutan,^{*b*} G. Passaleva,^{*a*} G. Penso,^{*d,p*} D. Pinci,^{*d*,1} E. Polycarpo,^{*q*} B. Saitta,^{*i*,*o*} R. Santacesaria,^{*d*} M. Santimaria,^{*b*} E. Santovetti,^{*j*,*k*} A. Saputi,^{*b*} A. Sarti,^{*b*,*p*} C. Satriano, d, e A. Satta, B. Schmidt, T. Schneider, B. Sciascia, A. Sciubba, d, p B.G. Siddi,^f G. Tellarini,^{f,m} C. Vacca.^{c,i} R. Vazquez-Gomez.^b S. Vecchi,^f M. Veltri^{a,r} and A. Vorobvev^h ^aSezione II ^bLaborato

^a Sezione INFN di Firenze, Firenze, Italy
^b Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
^c European Organization for Nuclear Research (CERN), Geneva, Switzerland
^d Sezione INFN di Roma La Sapienza, Roma, Italy
^e Università della Basilicata, Potenza, Italy
^f Sezione INFN di Ferrara, Ferrara, Italy
^g Università di Modena e Reggio Emilia, Modena, Italy
^h Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
ⁱ Sezione INFN di Cagliari, Cagliari, Italy
^j Sezione INFN di Roma Tor Vergata, Roma, Italy
^k Università di Roma Tor Vergata, Roma, Italy
¹ CNAF-INFN, Bologna, Italy
^m Università di Ferrara, Ferrara, Italy
ⁿ LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
^o Università di Cagliari, Cagliari, Italy
^p Università di Roma La Sapienza, Roma, Italy
⁹ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
^r Università di Urbino, Urbino, Italy

E-mail: davide.pinci@roma1.infn.it

The detailed explanation of the deadtime correction method and results are given in dedicated paper

inst

Dataset

• We took special "High Luminosities" runs in 2012 and 2018

Calo measured luminosity 2012	Estimated peak luminosity
4 x 10 ³² cm ⁻² s ⁻¹	5.7 x 10 ³² cm ⁻² s ⁻¹
5 x 10 ³² cm ⁻² s ⁻¹	7.1 x 10 ³² cm ⁻² s ⁻¹
6 x 10 ³² cm ⁻² s ⁻¹	8.6 x 10 ³² cm ⁻² s ⁻¹
8 x 10 ³² cm ⁻² s ⁻¹	11.4 x 10 ³² cm ⁻² s ⁻¹
10 x 10 ³² cm ⁻² s ⁻¹	14.3 x 10 ³² cm ⁻² s ⁻¹

Calo measured luminosity 2018	Estimated peak luminosity
1 x 10 ³² cm ⁻² s ⁻¹	6.7 x 10 ³² cm ⁻² s ⁻¹
1.1 x 10 ³² cm ⁻² s ⁻¹	7.2 x 10 ³² cm ⁻² s ⁻¹
1.4 x 10 ³² cm ⁻² s ⁻¹	9.4 x 10 ³² cm ⁻² s ⁻¹
2.4 x 10 ³² cm ⁻² s ⁻¹	16 x 10 ³² cm ⁻² s ⁻¹
3.1 x 10 ³² cm ⁻² s ⁻¹	21 x 10 ³² cm ⁻² s ⁻¹
5.8 x 10 ³² cm ⁻² s ⁻¹	39 x 10 ³² cm ⁻² s ⁻¹

Luminosity measurements from calorimeter

One of the fills of 2018

24.02.2020

Rates distribution before & after deadtime correction

In order to take correctly into account the dead time effect, it has to be corrected channel-by-channel (not in average);

LHCb luminosity: MUON vs CALO

• The mean values of these distributions are plotted (before and after deadtime correction) w.r.t calorimeter measurements for M1 (2012)

INSTR20

The difference (%) between the MUON and CALO measurements

In the whole measured range, less than 1% difference

INSTR20

Self-consistency of the muon system

Stability of the method in different regions

Mean values of channel by channel rates ratio for lumi 140/100 (2018), weighted on CALO lumi

Self-consistency of the muon system

High speed measurement with a few chambers

- In order to have a fast version of the method, since the readout of the whole system takes ~20 minutes, we tried to analyze the data from only two chambers per region.
- Measured difference is around 1%

Conclusion and next steps

- In runs taken in 2012, the average rates in different regions (corrected for the dead time) are very good independent estimators of the LHCb Luminosity;
- The study of the 2018 data is ongoing
- The results are self-consistent within the whole muon system
- Even a few chambers can be used for these measurements

Next steps:

- Finish the analysis of 2018 data w.r.t CALO
- Perform a new scan in 2021