





# The Phase 2 Upgrade of the LHCb Calorimeter system.

Yu. Guz (IHEP Protvino) on behalf of the LHCb collaboration



### The LHCb experiment

A single arm forward spectrometer at LHC.

Flavor physics, CP violation, hadron spectroscopy.





# The LHCb Calorimetry System of Run I and Run II



- ➤ solid angle coverage: 300x250 mrad
- distance from IP: ~12.5 m
- four subdetectors: SPD,PS,ECAL,HCAL
- based on scint./WLS technique, light readout with PMT
- > provides:
  - L0 trigger on high  $p_T e^{\pm}$ ,  $\pi^0$ ,  $\gamma$ , hadron
  - precise energy measurement of e<sup>±</sup>
     and γ
  - particle identification: e<sup>±</sup>/γ/hadron; contributes to Muon ID (HCAL).





#### The LHCb ECAL



Average performance figures from beam test (there is slight difference between zones):

Light yield: ~ 3000 ph.el. / GeV

Energy resolution:  $\frac{\sigma_E}{E} = \frac{(8 \div 10)\%}{\sqrt{E(GeV)}} \oplus 0.9\%$ 







#### Shashlik technology

- 4 mm thick scintillator tiles and 2 mm thick lead plates, ~25  $X_0$  (1.1  $\lambda_l$ ); Moliere radius ~ 36 mm;
- modules 121.2 x 121.2 mm<sup>2</sup>, 66 Pb +67 scintillator tiles;
- Segmentation: 3 zones → 3 module types, Inner (9 cells per module), Middle (4), Outer (1). Total of 3312 modules, 6016 cells, (7.7 x 6.3) m<sup>2</sup>, ~100 tons.
- Light readout: PMT R-7899-20, HAMAMATSU. HV supply: individual Cockcroft-Walton circuit at each PMT.





### LHCb Upgrade 1

Luminosity:  $4.1032 \rightarrow 2.1033$  cm-2s-1

Detector upgrade to 40 MHz readout



- \* Less than 10% of the detector will be kept
- \* 100% of the readout electronics will be replaced
- \* NEW data acquisition system and data center





# LHCb CALO Upgrade – phase 1 (ongoing)

Luminosity 2-10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> (~5.5 **pp** interactions per event):

- > PS and SPD are removed: no need for particle ID in L0
- > no change in the present ECAL and HCAL

#### For Run 3:

- the frontend electronics is being replaced to new one, compatible with the new DAQ & Trigger
- The PMT gain will be reduced by factor of ~5, to reduce PMT degradation
  - PMT linearity: OK within required dynamic range
- to compensate, the FE gain will be increased x5
  - new low noise ASIC (ICECAL)
- detector maintenance will follow radiation degradation of detector components:
  - regular replacement of degraded parts (PMTs / Cockcroft-Walton HV boards)
  - LS3: replacement of ECAL Inner modules







# LHCb – the long term roadmap



#### Upgrade 2:

- Iuminosity up to 2-10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> (~55 pp interactions per event)
- ~300 fb<sup>-1</sup> will be collected





# LHCb – the long term roadmap



#### ECAL in LS3 (2025-2027):

 replace modules around the beam pipe (~32 modules), to improve performance for Run 4

#### ECAL in LS4 (2031-2032):

- rebuild ECAL for maximum performance at L=2·10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
- include time measurements to disentangle multiple interactions in a bunch crossing.





# LHCb ECAL Upgrade II – conditions and requirements



up to ~1 MGy in the centre

up to 6·10<sup>15</sup> 1MeV neq/cm<sup>2</sup> in the centre



### LHCb ECAL Upgrade II – conditions and requirements

- need at least three areas with different granularities (maybe more)
  - two or three different technologies (e.g., for 0-20 krad, 20-200 krad, >200 krad)
- the Central area should sustain radiation doses of up to  $\sim$  1 MGy and neutron fluences of up to  $6\cdot10^{15}$  1MeV neq/cm<sup>2</sup>
  - scintillating garnet crystals
- The Outer area: Shashlik is a viable option
- The Middle area not defined yet (e.g., PWO?)
- requirements for the whole calorimeter:
  - fine granularity, which is required to handle increased occupancy
    - Molière radius should match the granularity (~1 cm at the centre → dense absorber!)
  - good energy resolution,  $\sigma(E) \sim 10\%/\sqrt{E} \oplus 1\%$
  - ability to measure time with few\*10ps precision for pile-up mitigation. The options are:
    - use intrinsic time resolution of the calorimeter modules
    - add a dedicated timing layer



### LHCb ECAL Upgrade II – options for the central area



#### Homogeneous Crystal:

- requires long crystals to contain 25 X<sub>0</sub>
- "fixed" Moliere Radius
- very good homogeneity → good energy resolution
- requires good radiation hardness (low rad-induced attenuation over the whole length)
  - can be mitigated by longitudinal segmentation



#### Shashlik type module:

- can be made very compact ~15cm
- "tunable" Molière radius
- more relaxed requirements to the scintillator rad. hardness (no att. over the cell size)
- but no rad. hard WLS fibers (yet) to transport light!



#### SPACAL type module:

- can be made very compact ~15cm
- "tunable" Molière radius
- fibers scintillate AND transports light! →
  potentially high photoelectron yield
- worsening energy resolution @ small angles
- radiation hardness requirements are similar to homogeneous crystal, mitigated by
  - compact length
  - longitudinal segmentation

started R&D on SPACAL type module, together with Crystal Clear Collaboration



# Radiation hard scintillating crystals

|                       | Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> :Ce<br>(YAG)* | Lu <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> : Ce<br>(LuAG)* | Gd <sub>3</sub> Al <sub>2</sub> Ga <sub>3</sub> O <sub>12</sub> : Ce<br>(GAGG)** | Lu <sub>2</sub> SiO <sub>5</sub> :Ce<br>(LSO) |
|-----------------------|--------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|
| density (g/cm³)       | 4.57                                                         | 6.73                                                            | 6.63                                                                             | 7.4                                           |
| X <sub>0</sub> (cm)   | 3.5 cm                                                       | 1.3                                                             | 1.59                                                                             | 1.1                                           |
| Refraction index      | 1.83                                                         | 1.84                                                            | 1.85                                                                             | 1.82                                          |
| Λ <sub>max</sub> (nm) | 550                                                          | 535                                                             | 520                                                                              | 420                                           |
| LY @ RT<br>(ph/MeV)   | 35000                                                        | 25000                                                           | 50000                                                                            | 30000                                         |
| decay time (ns)       | 70 + slow<br>component                                       | 70 + slow<br>component                                          | 60 + slow<br>component                                                           | 40                                            |
| rise time (ps)        | 1590-137                                                     | 923-230                                                         | 497-92                                                                           | 59                                            |

rise time: S.Gundacker, NIM A 891 (2018) 42-52



# Crystal production

#### Grown by Czochralski method



GAGG:Ce, FOMOS (RU)





YAG:Ce, Crytur (CZ)



Square (1x1 mm<sup>2</sup>) fibers are produced by cutting and polishing





#### **GAGG**: radiation hardness



GAGG samples (FOMOS Materials, Moscow)

GAGG fibers (FOMOS Materials, Moscow)



Sample irradiation, 24 GeV protons 3.1·10<sup>15</sup> p/cm<sup>2</sup> (0.91 Mgy)



 $\kappa = \frac{1}{d} ln \frac{I_{before}}{I_{after}} = 3.6 \ m^{-1}$  at 520 nm (significantly better than LYSO)

Fiber irradiation , 24 GeV protons  $3.4 \cdot 10^{15}$  p/cm<sup>2</sup> (1.02 Mgy)



before irradiation:  $L_{ATT}$ =101.5 cm after irradiation:  $L_{ATT}$ =33.6 cm

→ OK for 10 cm length after 1 MGy!



### timing properties: decay time



it is important to minimize spill-over by minimizing pulse length (25 ns LHC bunch spacing) co-doping with Mg, Ti, ... reduces decay time and fraction of "long" exponential.

\* Note the R&D on the GAGG and GYAGG material (M. Korzhik, this conference; exhibition of FOMOS Materials (Moscow)).



### timing properties: rise time



S.Gundacker, et al. NIM A 891 (2018) 42-52

The rise time is important for the precision of timing measurements co-doping with Mg also improves the rise time



#### Absorber for the central area

- Should be more dense than Lead: hence Tungsten based
- should have a rather complicated shape to place crystal fibers

For the material, the options are pure W, W-Cu or W-Pb alloys

- pure W is very hard and brittle, difficult for machining
- W-Cu alloy is available on market, with good mechanical properties
- W-Pb alloy is preferable (smaller  $X_0$  for same  $R_M$ ), but is not commercially available

The R&D on absorber technologies is ongoing (MISIS, Moscow). Several technologies are considered: Selective Laser Melting, Chemical Vapor Deposition, Metal Injection Molding etc.



a sample produced by Selective Laser Melting, pure W (MISIS)



# Prototype studies



### Prototypes 2018



present ECAL module shashlik, Pb:Sc = 1:2 (vol) 25X<sub>0</sub> = 40cm; R<sub>M</sub>=36mm

"short" shashlik module Pb:Sc = 1:1 (vol) 25X<sub>0</sub> = 27cm; R<sub>M</sub>=27mm (produced in Protvino, 2017)



Cu-W alloy, 14.9 g/cm2 20 cm long module to reach 25 X0 longitudinal segmentation: 10+10 cm 9 cells of 2 x 2 cm2with MR~1.5 cm 1 cell of GAGG, 4 cells of YAG, 4 cells of SCSF78 (KURARAY)





#### beam test 2018

- Energy resolution for SPACAL prototype
- time resolution for SPACAL and Shashlik



DWC = Delay Wire Chamber

(\*) The MCP PMTs were kindly provided by Alexander and Mikhail Barnyakov, BINP, Novosibirsk



**Electronics:** 

LeCroy 1182 ADC for energy measurements

CAEN DT5742 (5 GS/s, 12 bit) digitizer for

#### beam test 2018







Time resolution in SPACAL, front section

| E, GeV | PMT HV | σ(t), ps |
|--------|--------|----------|
| 20     | 630 V  | 85       |
| 20     | 730 V  | 78       |

Present ECAL module (Shashlik) + present PMT (R7899-20)

| E, GeV | PMT HV | σ(t), ps |
|--------|--------|----------|
| 20     | 800 V  | 69       |
| 30     | 800 V  | 56       |
| 30     | 750 V  | 57       |

more details in:

DOI: 10.1109/TNS.2020.2975570

#### SPACAL energy resolution



(3.1% from GEANT4 simulation)



# Prototypes 2019

Longitudinally split versions of SPACAL and Shashlik (at 7X0 - ~ shower max) improves time resolution;

also, creates a natural place for the separate timing layer







Shashlik prototypes (several versions)



Absorber: Crytur (CZ) pure W; electroerosion cutting of 0.5mm plates

Scintillator:

YAG:Ce (Crytur), 6 cells GAGG:Ce (FOMOS), 3 cells



### Beam test 2019 (DESY)

e+ beam, energies 1-5 GeV Basically same setup as in 2018



Better than the existing modules with standard readout: 70 ps resolution is achieved at 5 GeV (same as @20 GeV for the standard version)

Nearest plan: try new KURARAY WLS fibers YS-2 (much faster luminescence decay time than Y11) → expect improvement in the time resolution

#### Energy Resolution Vs. Energy



dependence of the energy resolution on incident angle (in agreement with GEANT4 simulation). Stochastic term within 10-13%, which is in the right ballpark.

The analysis is ongoing.

(Time resolution measurements for the SPACAL prototype failed, to be redone in May 2020). (~50 ps @ 5 GeV expected from simulation)



#### Conclusions

- At present, LHCb is undergoing a major first upgrade. A second upgrade is foreseen in ~2030.
- The electromagnetic calorimeter needs some consolidation of the inner region by LHC LS3 (2025-2027) compatible with the running conditions after Upgrade II, which requires R&D on radiation hard ECAL modules.
- In Long Shutdown 4 (LS4) a major upgrade of the ECAL will be required to cope with the increased luminosity, the harsh radiation and pile-up conditions, by replacing a significant part of the modules with new technologies.
- Generic R&D and prototyping has started to develop radiation hard sampling ECAL modules of SPACAL type, as well as studies of intrinsic time resolution of ECAL modules.

