

AMoRE

Search for neutrinoless double beta decay of ¹⁰⁰Mo using low-temperature molybdenum containing crystal detectors

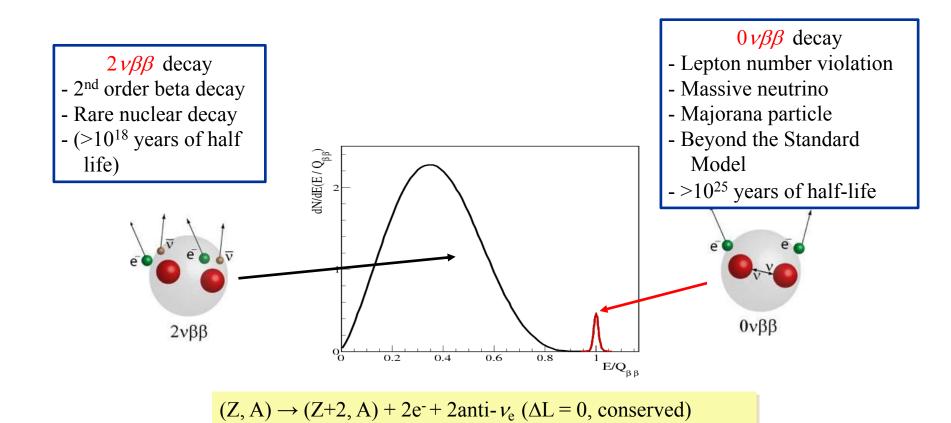
Moo Hyun Lee

Center for Underground Physics (CUP)
Institute for Basic Science (IBS)
Daejeon, Korea

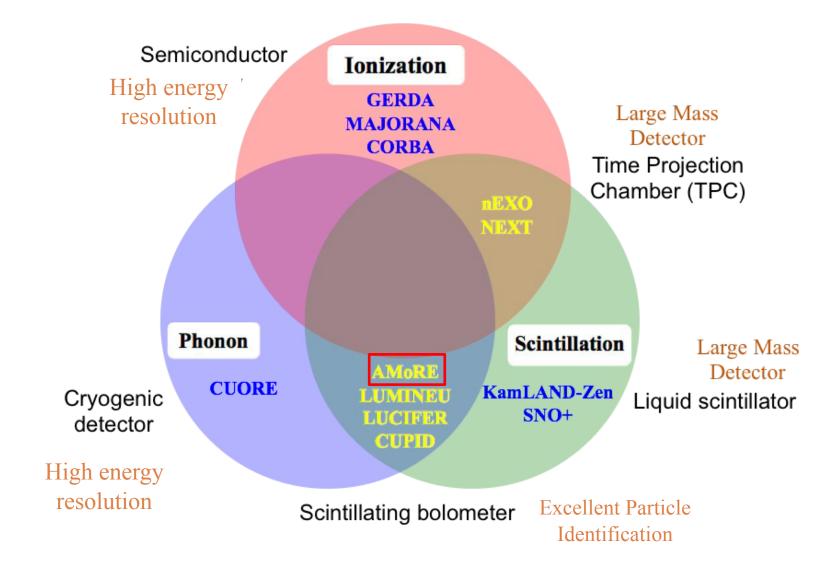
On behalf of the AMoRE Collaboration

AMoRE Collaboration

2

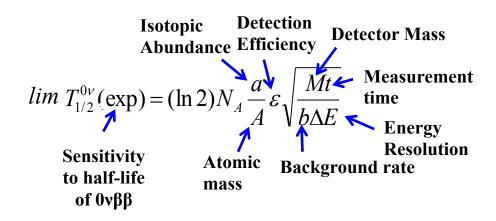

V. Alenkov et al., Technical Design Report for the AMoRE 0ν2β Decay Search Experiment, arXiv:1512.05957v1

AMoRE: Neutrinoless double beta decay

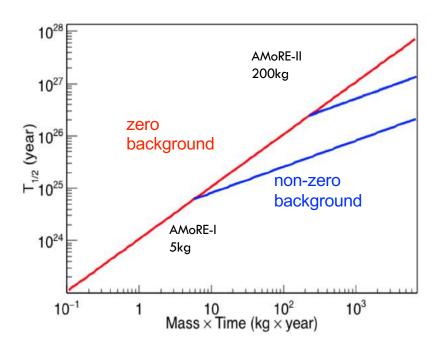

The goal of **AMoRE** is to search for neutrinoless double beta decay $(0\nu\beta\beta)$ of 100 Mo using Mo-based scintillating crystals and low-temperature sensors.

 $(Z, A) \rightarrow (Z+2, A) + 2e^{-}$ $(\Delta L = 2, \text{ violated})$

Detection Techniques of 0vbb



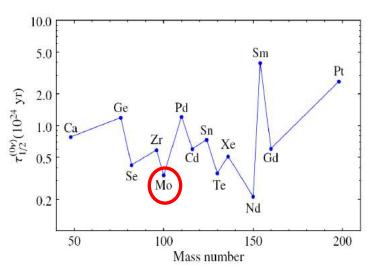
AMoRE Experimental Approach


Sizable background case:

"Zero" background case:

When b is $\sim O(1)$,

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_A \frac{a}{A} \varepsilon Mt$$



AMoRE is aiming for zero background.

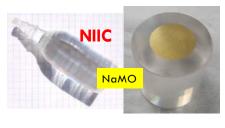
Why we use 100 Mo for $0\nu\beta\beta$ search ?

- High Q-value (ββ) of 3034.40 (12) keV. ($^{208}\text{Tl}\rightarrow^{208}\text{Pb}$, the highest & intensive 2.614 MeV γ from nature)
- High natural abundance of 9.7%.
- Relatively short half life $(0\nu\beta\beta)$ expected from theoretical calculation.

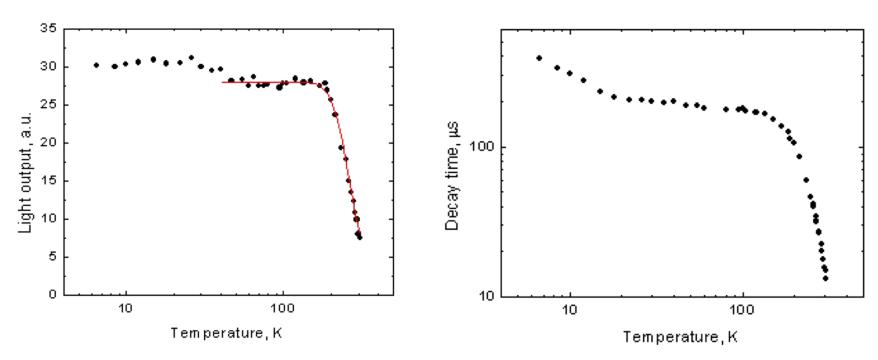
Barea et al., Phy. Rev. Lett. 109, 042501 (2012)

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca	4.271	0.19
⁷⁶ Ge	2.040	7.8
⁸² Se	2.995	8.7
¹⁰⁰ Mo	3.034	9.7
¹¹⁶ Cd	2.802	7.5
¹²⁴ Sn	2.228	5.8
¹³⁰ Te	2.533	34.1
¹³⁶ Xe	2.479	8.9
¹⁵⁰ Nd	3.367	5.6

AMoRE Parameters



- □ Crystals: ⁴⁰Ca¹⁰⁰MoO₄(CMO) or XMO (X: Li, Na, or Pb)
 - \square 100Mo enriched: > 95%
 - \blacksquare ⁴⁸Ca depleted: < 0.001% (N.A. of ⁴⁸Ca:0.187%)
- □ Low temperature detector: 10 30 mK
- □ Energy resolution: ~5 keV @ 3MeV, Excellent PSD


The AMoRE Plan

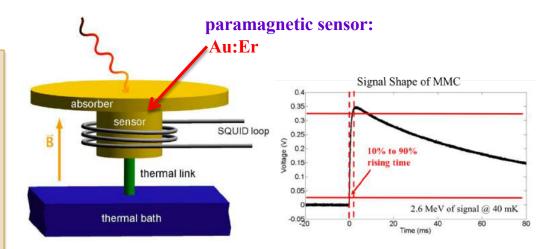
	Pilot	Phase I	Phase II
Mass (Crystal)	1.9 kg CMO	6 kg (CMO + LMO)	200 kg XMO (X: Li, Na, Pb)
Bkg [keV·kg· year]-1	<10-2	<10-3	<10-4
T _{1/2} Sensitivity [years]	~10 ²⁴	~10 ²⁵	~8 ×10 ²⁶
<m<sub>ββ > Sensitivity [meV]</m<sub>	400 - 700	100 - 300	13 - 25
Location	Y2L (700	m depth)	Yemilab (1100m depth)
Schedule	2015 - 8	2020 - 2021	2021 -

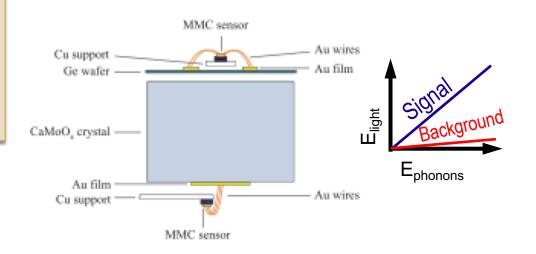
Temperature dependence of CaMoO₄ light yield

■ From RT to 7 K, light yield is increased by factor of 6. (V.B. Mikhailik et al., NIMA 583 (2007) 350)

- CMO absolute light yield:
 - ~ 4,900 ph/MeV @ Room Temp. (H.J. Kim et al., IEEE TNS 57 (2010) 1475)
 - ~ 30,000 ph/MeV @ ~10 K
- → Highest light yield among Molybdate crystals.

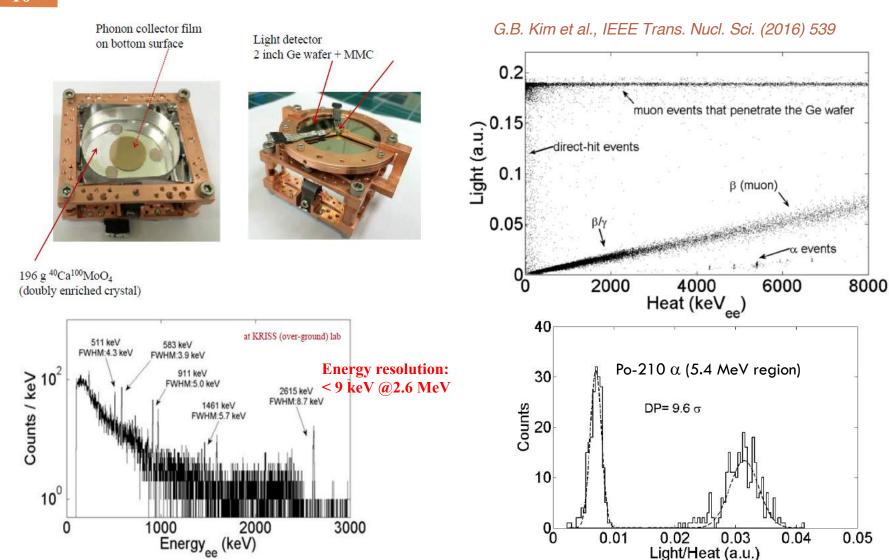
MMC (Metallic Magnetic Calorimeter) for LTD

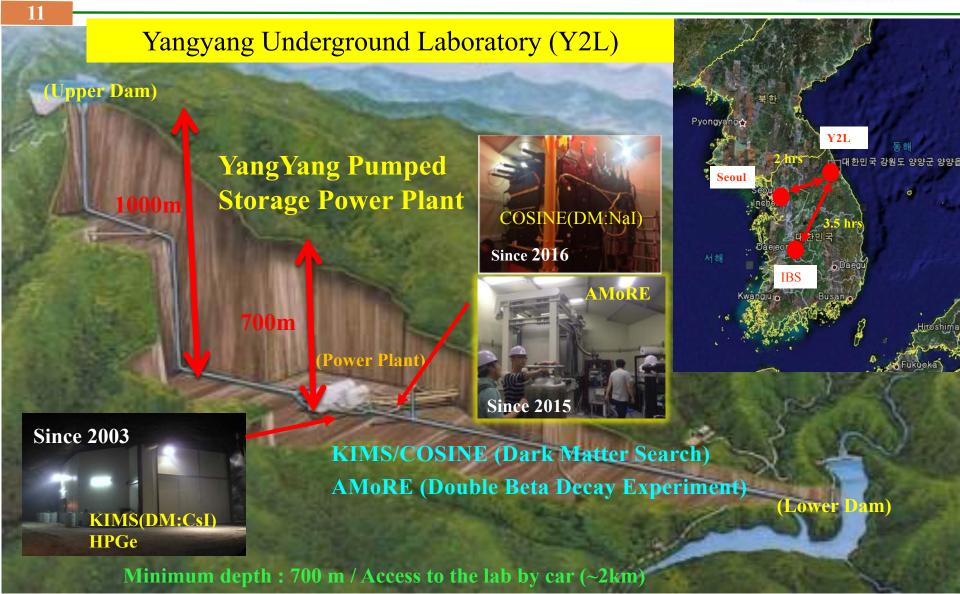

S.J. Lee et al., Astroparticle Physics 34 (2011) 732-737

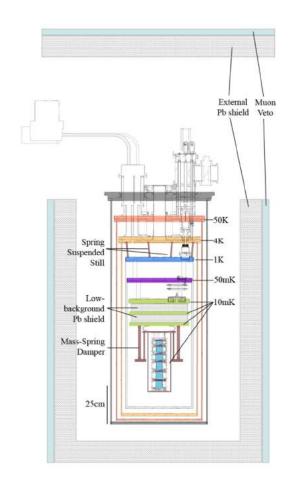

Principle of operation

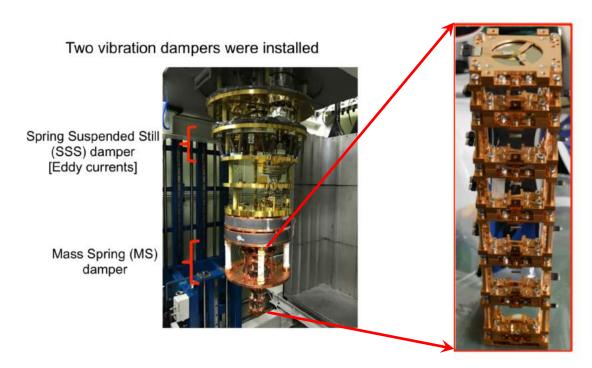
- 1. Energy absorption in CMO crystal.
- 2. Phonon & Photon generation.
- 3. Temperature increase (gold film).
- 4. Magnetization in MMC decreases.
- 5. SQUID pickup the change.

Advantage of MMC

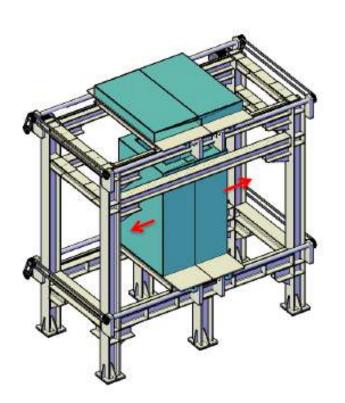

- Fast rising signal : \sim 0.5 ms (critical to reduce 2vββ random coincidence)
- Fairly easy to attach to absorber. (i.e. CMO)
- Excellent Energy resolution

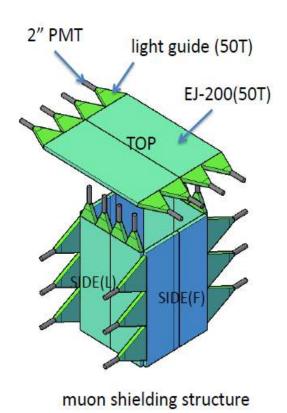

Prototype Detector and Above-ground Measurements

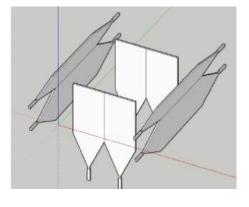

AMoRE-Pilot/I at Y2L in Yangyang, Korea



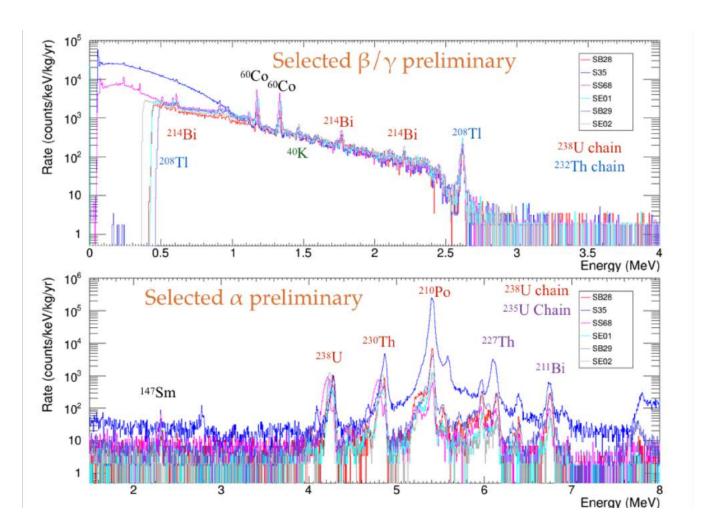
AMoRE-Pilot (Run6)


- Six CaMoO4 crystals with total mass of ~ 1.9 kg
- Two vibration dampers were installed




10cm ultra-low background Pb

Shielding structure of AMoRE-pilot & AMoRE-I


Additional muon counters to cover gaps from AMoRE-I

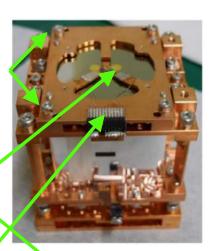
15cm low background Pb

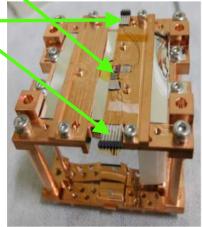
☐ PE, borated PE, borated rubber sheet and boric acid rubbers were also added for neutron shielding during AMoRE-pilot runs

Selected β/γ and α Event Distributions

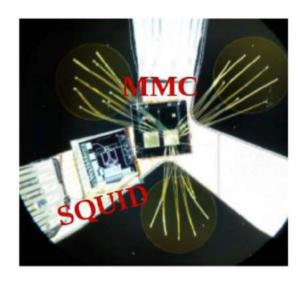
After applying rejection and selection cuts, α and β/γ distributions were obtained for each detector.

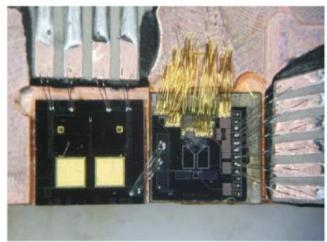
Backgrounds of AMoRE-Pilot Exp.




Photon Detector

SS(Stainless Steel) screws


PCB (Printed circuit Board)+Stycast


Pin Connector+ PCB+Stycast

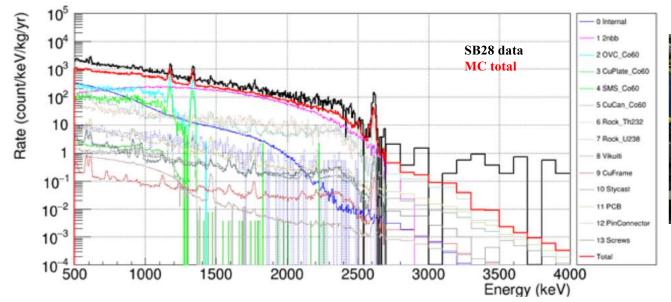
Detector components radio-activities (HPGe)

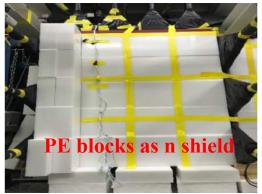
Total masses and activities of components in the AMoRE-Pilot Setup (up to Run5).

Item	Total mass (g)	²²⁶ Ra (mBq)	²²⁸ Ac (mBq)	²²⁸ Th (mBq)	⁴⁰ K (mBq)
Pin connector	7.77	15.08	27.67	24.09	28.75
PCB	2.88	0.54	0.50	0.41	3.04
Stycast	0.69	0.20	0.26	0.25	0.20
SS Screws	200.00	0.16	< 0.42	0.42	< 0.38
SQUID	0.12	< 0.23	< 0.46	< 0.14	< 2.24
Phosphor bronze spring	4.73	< 0.01	< 0.01	< 0.01	< 0.01

- Even though the amount is small, these components are major sources of background.
- Pin connector is the most active component.
- Most of the active components are replaced in the Run6 setup.

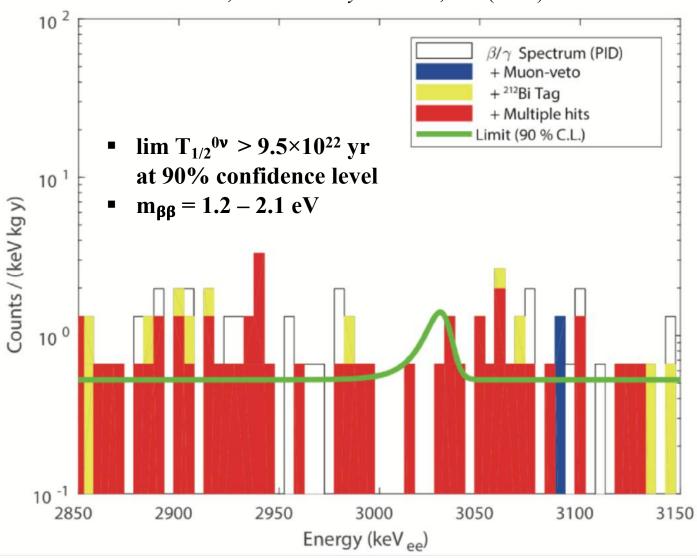
Sources of background




El	Decay	$T_{1/2}$	Q(MeV)	Mother	Chain	Comment
²⁶ Al	EC	$7.4 \times 10^5 \text{y}$	4.004	N/A		Long lifetime
⁵⁶ Co	EC	0.21y	4.567	N/A		Short lifetime
^{88}Y	EC	0.29y	3.623	⁸⁸ Zr (0.23 y)		Short lifetime
¹⁰⁶ Rh	B-	30s	4.004	106 Ru(1.02y)		
¹²⁶ Sb	В-	12.5d	3.670	126 Sn(2.3x10 5 y)		Long lifetime
¹⁴⁶ Eu	EC	4.61d	3.878	¹⁴⁶ Gd (0.13 y)		Short lifetime
²⁰⁸ Tl	B-	3.05m	4.999	²²⁸ Th (1.91 y)	²³² Th	Major source
²⁰⁹ Tl	B-	2.16m	3.970	²³³ U(159200y)	^{233}U	2.1% branching
²¹⁰ Tl	В-	1.3m	5.482	²²⁶ Ra(1600y)	^{238}U	0.02% branching
²¹⁴ Bi	B-	19.9m	3.269	²²⁶ Ra(1600y)	^{238}U	Major source

- Only Thorium and Uranium natural radioactivity are dangerous for Q = 3.02 MeV. → Great advantage to investigate high Q-value nuclei!
- ^{110m}Ag (3010.5 keV) doesn't contribute for Mo experiment.
- Cosmogenic excitation is negligible after 1 year cooling at underground.

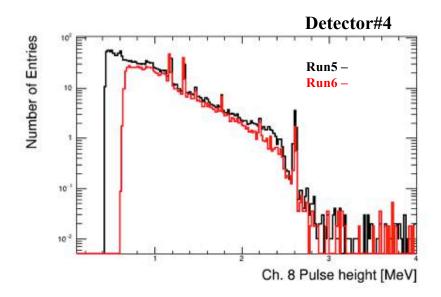
Run5 β/γ candidate events and MC

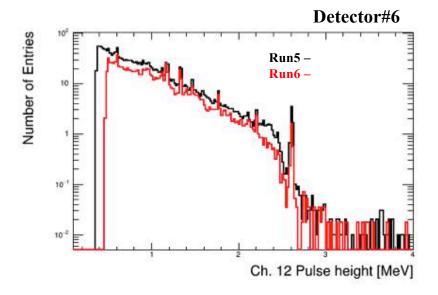


- ☐ MC distributions are estimated rates with measured activities except ⁶⁰Co.
- ☐ Level of ⁶⁰Co was estimated by likelihood fit with free parameters to match shapes.
- ☐ More background for data at higher energy than MC (E > 2.8 MeV). \rightarrow Added PE, borated PE, borated rubber sheets, and boric acid as a neutron shield to block neutrons from the rock on August 15th, 2018.

Physics result from AMoRE-pilot run-5

V. Alenkov, et al. Eur. Phys. J. C 79, 791 (2019).




AMoRE Pilot Run-6

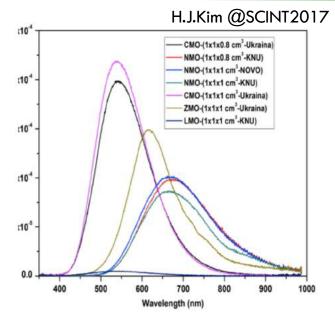
Modifications in 6th commissioning run from the 5th run.

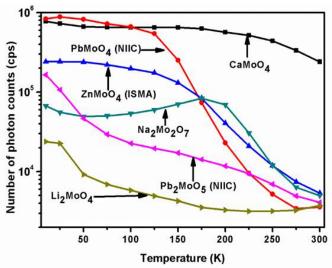
- Six CaMoO₄ crystals (total mass ~1.9 kg)
- Pin-connector, stycast, and PCB were replaced with Kapton, copper, and soldering with a high-purity solders.
- Some stainless steel bolts were replaced.
- Heaters were installed on crystals.

Event rate (ckky) 2.8 < E < 4 MeV 0.863±0.092

0.512±0.148

0.723±0.085 0.598±0.159

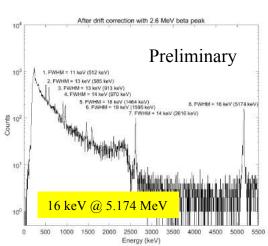



- Even though CMO (CaMoO₄) is a very good detector material which has the largest light output among Mo based crystal scintillators, there are other Mo crystals suitable for AMoRE-II experiment besides CMO. CMO has disadvantage that we have to purchase ⁴⁸Ca depleted isotopes, expensive.
- We are working on R&D of various molybdate crystals including Li₂MoO₄, Na₂Mo₂O₇, PbMoO₄ and other compounds..

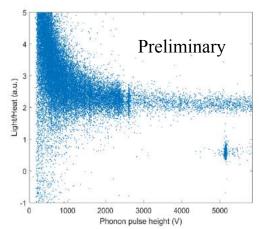
Crystals	λ_{em}	Decay time [µs]	E_(LED) [%]	E_(90 Sr) [%]
CaMoO ₄	540	237	100	100
ZnMoO ₄ (ISMA)	620	F	22	32
PbMoO ₄ (NIIC)	545	20	13	105
Pb ₂ MoO ₅ (NIIC)	600	5	3	22
Li ₂ MoO ₄	540	23	1	5
Cs ₂ Mo ₂ O ₇	701	363[31]	12	1
Na ₂ Mo ₂ O ₇	663	756[36]	55	9

 $[\]lambda_{\rm em}$, peak emission wavelength; E_(LED), energy deposited by a 280 nm UV LED source; E_(90 Sr), energy deposited by a 90 Sr beta source.

H.J. Kim et al., Crystal Research & Technology, Nov. 2019 We are going to decide the crystal by mid. 2020.



Full size crystals tests at LT (~ 20 mK)

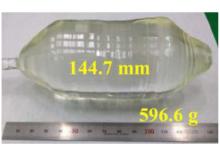


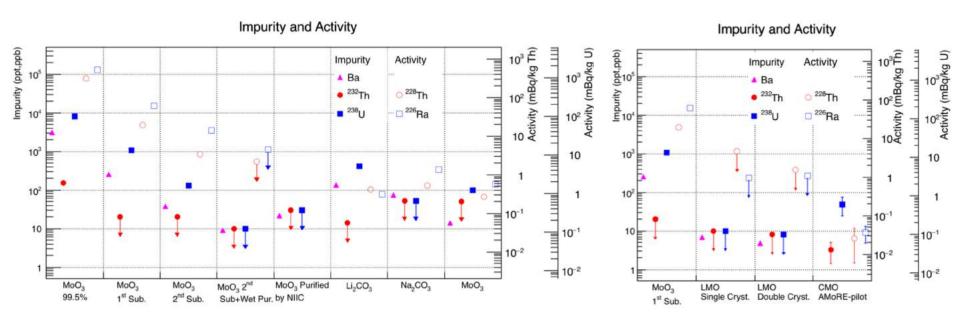
KRISS test for NIIC Li₂MoO₄

Above ground under Thoriated W rode (3 days)

IBS HQ test setup for multi-crystals (i.e., PbMO, NaMO, CMO)

Low background Crystal growing facility at CUP


- Main goal
 - CaMoO₄ & Li₂MoO₄ crystal growing R&D for AMoRE-II
 - Other DBD or DM crystal R&D
- Deep purification of CaCO₃, Li₂CO₃, Na₂CO₃ and MoO₃ powders (< 50 μBq/kg for U,Th chain)
- Crystal growing equipment:3 Czochralski, 2 Kyropoulous, 1 Bridgman crystal growing set-ups.


CMO & LMO crystals by CUP

- O.Gileva's poster on purification at CUP
- D.Y. Kim's poster on crystal growth at CUP

AMoRE-II: Purification for XMO crystals

- ☐ Ba is a good indicator for Ra since they are in the same family.
- ☐ We have a good progress toward AMoRE-II crystals.

AMoRE-II crystal requirement:

Mo based crystal with

- ☐ Good phonon resolution, high light yield and excellent PSD
- \square Extremely low background in ROI (< 0.0001 evt/kg/y)
- ☐ Easy to grow, low price for crystal growing.

^{48depl}Ca¹⁰⁰MoO₄ (AMoRE-Pilot/I): Excellent but ^{48depl}Ca & Ca deep purification necessary.

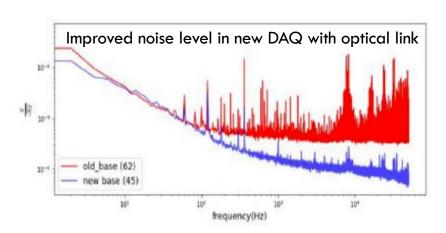
AMoRE Phase I: About to start

AMoRE-phase 1: A scaled-up version of Pilot

Six ⁴⁰Ca¹⁰⁰MoO₄ crystals from Pilot: 1.886 kg Seven new ⁴⁰Ca¹⁰⁰MoO₄ crystals: 2.696 kg Five extra crystals Li₂¹⁰⁰MoO₄: 1.5 kg

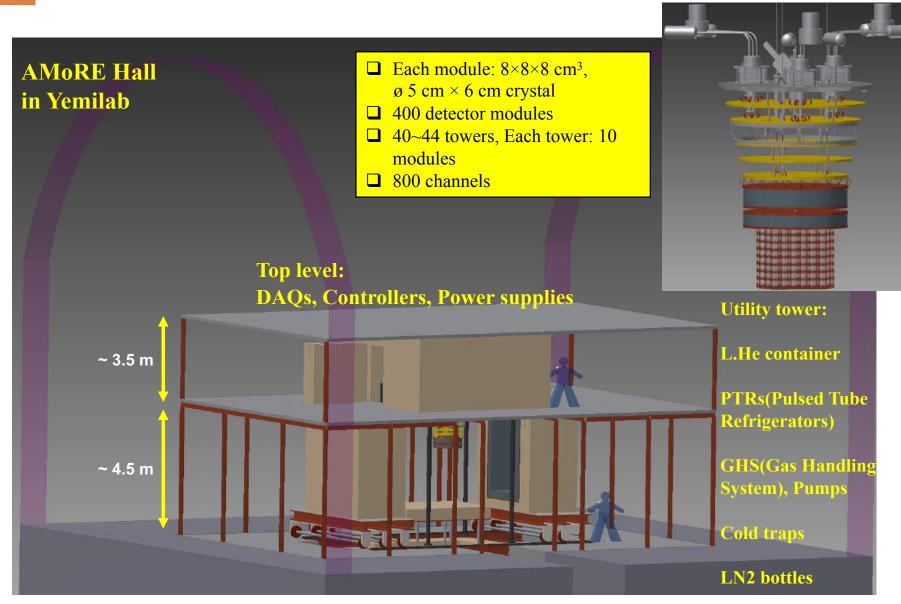
Total: 6 kg, 18 crystals with ~2.4 kg of ¹⁰⁰Mo

Extra works to be done:

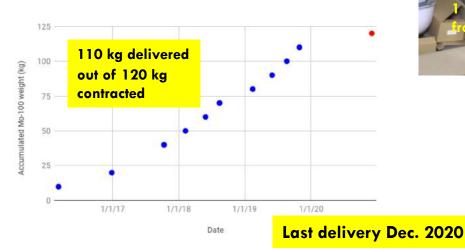

MMC+SQUID wirings for 36 channels.
MMC production at IBS
SQUIDs from PTB
Mass Spring Damper modification
New superconducting shield
Extra DAQ modules
Muon counters

Schedule:

Run starts from March, under preparation 3+ years measurement



AMoRE-II design: Cryostat, shield, clean room etc..

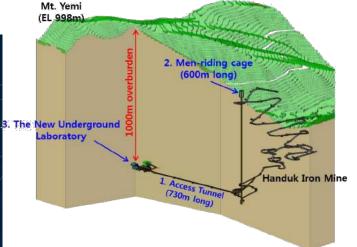


Mo-100 powder for AMoRE-II

Lot	Delivery@Y2L	Wedight/kg
#1(3172)	3/9/16	10
#2(3328)	3/ 4/ 10	10
3434	12/28/16	10
3497	10/12/17	10
3535	10/12/17	10
3589	2/7/18	10
3649	5/29/18	10
3675	8/14/18	10
3741	2/13/19	10
3803	5/31/19	10
3824	8/20/19	10
3848	10/20/19	10

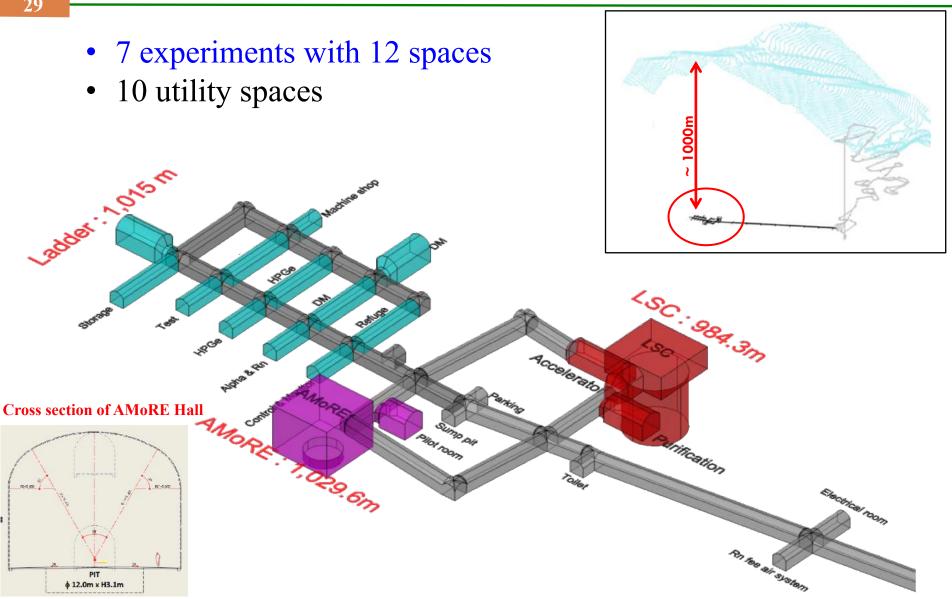
HPGe Array meas. (9/13 - 11/28/2017)

- 226 Ra chain (238 U): 0.78 \pm 0.19 mBq/kg
- ²²⁸Th chain (²³²Th): 0.65 ± 0.15 mBq/kg (first measurement)
- 88 Y: 97 ± 25 μ Bq/kg (cosmogenic)

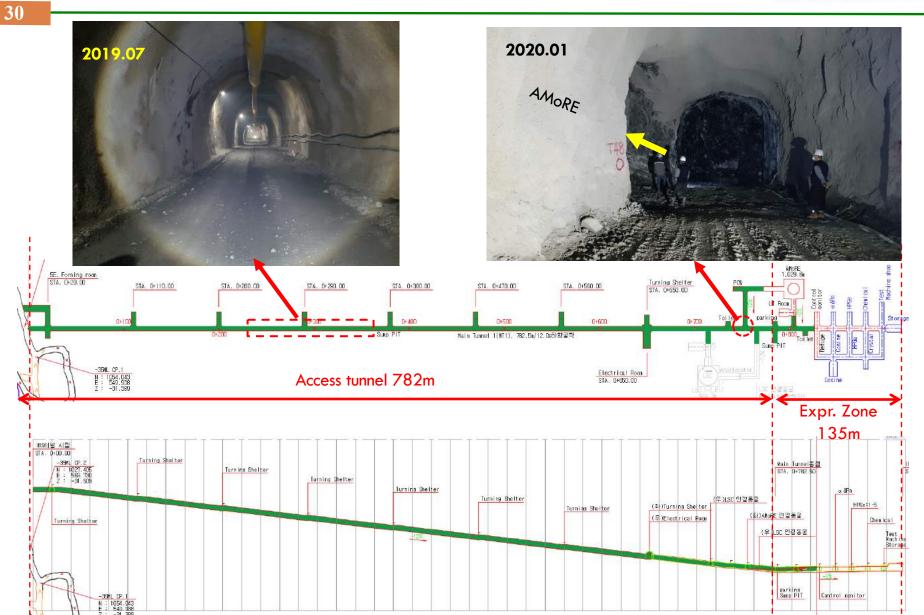

Yemilab: A new underground lab in Handeok mine

- ☐ The only operating iron ore mine in Korea.
- □ 0.7 million tons of iron ores extracted per year
- ☐ A 600 m long 2nd shaft is in operation. Main route to the underground lab for scientists after the construction is completed.

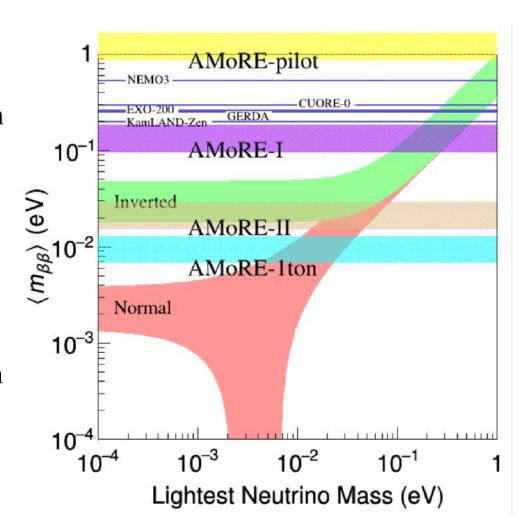
□ A ~5 km rampway for mining shared with tunnel excavation and construction works.


- Tunnel excavation
- **>** Shaft cage ✓
- Underground lab
- Surface office/lab

Handeok has two shafts for mining 1^{st} shaft ~ 300 m deep 2^{nd} shaft 600 m deep (NEW)



Yemilab: Tunnel excavation (~75% now) by July 2020

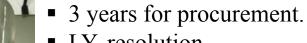


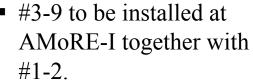
Summary

- □ Seven commissioning runs in AMoRE-pilot have completed in December 2018. First physics result published in 2019. Analysis work on-going.
- □ AMoRE-I is currently being prepared to start from March.
- □AMoRE-II preparation is ongoing in parallel together with the Yemilab construction.

Backup slides

AMoRE-I CMO crystals (FOMOS)





LY, resolution, transmittance, RT background measurements done.

Total: 3.387 kg

