

High precision time measurements in future experiments

J. Va'vra, SLAC

J. Va'vra, https://www.slac.stanford.edu/~jjv/activity/Vavra_Invited_paper_La_Rochelle_2019.pdf

High luminosity drives new timing developments

ATLAS event after high luminosity upgrade:

Challenge: Connect charged tracks to the correct production vertices

- 4D tracking , which is a combination of <u>Time & Position</u> measurement:

 a) Tracking detector for ATLAS & CMS: ~ 10's of ps & 10's of μm per MIP/pixel.
 b) New RICH DIRC detector applications: ~ 80-100 ps/photon/pixel.
- There is a general push for higher luminosity at LHC, Belle-II, Panda, Electron-ion collider, etc.

Examples of high resolution timing at a level of ~30 ps for MIPs, and ~100ps for single photons

ATLAS High-Granularity Timing Detector (HGTD) with Low Gain Avalanche Diodes (LGAD):

TORCH DIRC at LHCb:

Belle-II iTOP DIRC:

EIC DIRC in USA:

Anode pickup electrode

Cathode pickup electrodes

Differential signal to front-end electronics

ALICE-like MRPC TOF counters:

FIT at ALICE:

electrically floating

electrically floating

2/25/20

Rate capability of various detectors

MCP rate capability

A. Lehmann, Panda, RICH 2010, Cassis, France

- Older MCPs could operate up to ~200-300 kHz/cm² at a gain of 10⁶.
- Endcap Panda DIRC MCPs plan to operate rate up to ~2 MHz/cm².
- Belle-II TOP counter MCPs plan to operate at a rate of ~2 MHz/cm².
- LHCb TORCH MCPs plan to operate at a rate of up to ~36 MHz/cm², or ~2 MHz/one micro-pad.

MCP QE aging and total charge

A. Lehmann, RICH 2018 and K. Matsuoka, TIP 2017

Belle-II: K.Matsuaoka, TIPP 2017:

- Lehmann & Matsuaoka: Latest Photonis and Hamamatsu MCPs reached ~20 C/cm².
- **Belle-II:** expect total of ~10 C/cm².
- LHCb TORCH: expect total of ~5 C/cm².
- Message: New ALD-based treatment has improved MCP QE lifetime significantly.

Maximum rate and charge dose capability of other detectors

ALICE MRPCs:

Present detector can run at ~500 Hz/cm². New low resistivity MRPCs will run at ~50 kHz/cm².

Diamond (TOTEM):

This technology is very radiation hard. High rate capability achieved: ~3 MHz/cm².

SiPMTs:

Operation of some RICH detectors in single photon regime at $10^{11}n_{eq}cm^{-2}$ & -30 °C is possible. All SiPMs, even those irradiated up to $10^{14} n_{eq}/cm^2$, are "usable" at liquid nitrogen temperature.

LGADs (ATLAS UFSD project):

Expect rates up to $\sim 40 \text{ MHz/cm}^2$.

Sensors & ASICs will be exposed to $3.7 \times 10^{15} n_{eq}/cm^2$ and 4.1 MGy (!!!) !!!!

Present test results are very close to this goal.

Time measurement

Timing resolution for leading edge timing

(Well-known formula to fast electronics designers for a long time)

A simple formula: $\sigma_{\text{time}} = \sigma_{\text{noise}} / (ds/dt)_{\text{threshold}} \sim t_{\text{rise-time}} / (S/N)$

- For LGAD detector with $t_{rise-time} \sim 400 \text{ ps}$, one needs S/N ~20 get to a ~20 ps regime.
- However, this picture is over-simplified see next slide.

Many other contributions to timing resolution, which makes timing measurement difficult

Example of contributions to the timing resolution:

 $\sigma_{\text{Total}} \sim \sqrt{\left[(\sigma_{\text{TTS}} / \sqrt{N_{\text{pe}}})^2 + (\sigma_{\text{pixel}} / \sqrt{12})^2 + \sigma_{\text{Electronics}}^2 + \sigma_{\text{Track}}^2 + \sigma_{\text{to}}^2 \dots \right]}$

- $\begin{array}{ll} \sigma_{Electronics} & \mbox{ electronics contribution} \\ \sigma_{pixel} & \mbox{ pixel size} \\ \sigma_{TTS} & \mbox{ single electron transit time spread} \\ \sigma_{Track} & \mbox{ timing error due to track length } L_{path} \end{array}$
- $\sigma_{\text{Time walk}}$ time walk due to pulse height changes
 - start time (often dominated by the bunch length)

+ there are many other possible effects in a large system:

- clock distribution throughout a large system
- cross-talk effects in multi-pixel detectors (ringing in a multi-photon environment)
- baseline oscillation or other instability instability in multi-pixel detectors
- charge sharing in multi-pixel detectors (pixel edge effects)
- chromatic effects
- Unwanted pulse tails
- Calibration
- ground loops, current return, differential vs. single ended readout, etc.

 σ_{to}

Ultimate resolution using single-pixel MCP-PMTs

This is the fastest detector to my knowledge

J. Milnes and H. Howorth, Photek Co. info, 2005

Using the simple formula:If we assume S/N ~ 20 $t_{rise time}$ ~66 ps σ_{time} ~ $t_{rise time}$ /(S/N) ~3 ps

MCP-PMT: Single-pixel TOF counter, no amplifier, large Npe

K. Inami et al., NIMA560(2006)303

Two Hamamatsu R3809U-59-11 MCPs:

- 6 microns MCP hole sizes
- Fused silica radiator+window:10+3 mm
- Single pixel
- MCP Gain ~2x10⁶
- SPC-134, Becker & Hickl GmbH
- Electronics resolution: 4.1 ps
- Npe ~ 70
- Total anode charge: 1.4x10⁸ el. !!

A. Ronzhin et al., NIMA795 (2015)288

Two back-to-back Photek 240 MCPs:

- 6 microns MCP hole sizes
- Fused silica window: 8 mm
- Single pixel
- MCP Gain ~10⁶
- DRS4 waveform digitizer
- Electronics resolution: 2.0 ps
- Npe ~ 80
- Total anode charge: 8x10⁷ el. !!

L. Sohl et al., Elba conf., 2018

Two Hamamatsu R3809U-50 MCPs:

- 6 microns MCP hole sizes
- Fused silica radiator: 3.2 mm
- Single pixel
- MCP Gain ~ 8x10⁴
- 20 GSa/s scope + CFD algorithm
- Electronics resolution: 2.2 ps
- Npe ~ 44
- Total anode charge: 3-4x10⁶ el.

• <u>Message:</u> Excellent resolution can be achieved with a single-pixel MCP for MIP signals.

• <u>However, one has to be careful running large anode charges</u> – see next slide.

Why do I want limit total charge on MCP?

J. Va'vra, MCP logbook #6, page 122, 2010, and https://www.slac.stanford.edu/~jjv/activity/Vavra_Invited_paper_La_Rochelle_2019.pdf.

Ion feedback (afterpulse fraction) with two old Burle Planacon tubes with 10 µm holes:

Old Burle Planacon MCP-PMT 85013-501:

- <u>Message</u>: One should limit total charge to ~2-3x10⁶.
- Are the new MCPs behaving better ? see next slide.

Challenges of multi-pixel detectors

ALICE MRPC TOF detector

C. Williams, private communication, and Jaron et al., Nucl.Instr.&Meth A 33(2004)183

ALICE MRPCs:

Differential input to amplifier:

TOT pulse height correction:

- Message #1: Differential design throughout to minimize pick-up, cross-talk, etc.
- Message #2: Time-over-threshold pulse height correction works if pulse shapes are "clean".
- Message #3: NINO electronics provides a low power consumption (40 mW/channel; 1ns-peaking time, 8 ch./chip).
- Message #4: ALICE timing resolution was limited by t_0 resolution => $\sigma_{\text{Total ALICE }\sigma\text{ystem resolution}}$: ~60 ps.

• New R&D MRPC in progress:

a) ALICE is doing R&D with lower resistivity 400 μm-thick glass, allowing to build 20-gap MRPC capable of rate up to ~50 kHz/cm²
b) sPHOENIX at BNL is doing R&D using 2.8 GHz differential preamp LMH 6881 and DRS4 digitizer (M. Chiu).

2/25/20

How to connect to Planacon MCP-PMT ?

In principle, MCP is a simple device, but....:

The issue is how to connect to it ? Various schemes which were tried:

- MCP is inherently a single-ended device, which invites a possible pick-up problems. One needs a good RF-shielded box around the device to avoid noise on the ground reference.
- Early Planacon models had unwanted capacitances, inductances, ground return issues, and low BW connectors, which contributed to cross-talk, pulse shape distortions, ringing, fake hits, etc.
- Good news: There is a progress. See appendix.

SLAC 1-st FDIRC prototype with 320-pixels in MCPs

SLAC effort: NIMA 553 (2005) 96

Old Burle Planacon:

SLAC Amplifier based on Elantek 2075: Voltage gain of ~130x, and a rise time of ~1.5ns.

Single photons from laser:

SLAC CFD (32 ch./board):

Single pixel timing resolutions with Planacon MCP:

• <u>Message:</u> This was still one of the best timing performance of any large RICH detector system with MCPs.

```
2/25/20
```

Cross-talk in early version of Planacon MCP 85011-501

J.Va'vra, MCP-PMT log book #1, p.81, 2005

4 ns/div & 50 mV/div & 5 mV/div

Old Burle Planacon:

Elctronics used in this test:

Total voltage gain of 130x = Elantek 2075 amp. 13x + Phillips amp. 10x

All 64 pixel instrumented

Ringing if too many photons arrive at the same time

- Message: The cross-talk was very complicated geometrically on the old Planacon.
- New MCPs behave better progress after 15 years ! See appendix.

2/25/20

1024 pixel Burle Planacon – available already in 2005

J. Va'vra, https://www.slac.stanford.edu/~jjv/activity/Vavra Photon detector studies.pdf, 2005, and D. Brasse, Workshop on timing detectors, Clermont, 2010

1) FDIRC at SLAC:

Burle Planacon 85021-600 with 1024 pixels:

- Small margin around boundary
- 1024 pixels (32 x 32 pattern)
- Small pixel size: ~1.4mm x 1.4mm
- Pitch: 1.6 mm
- Bottom MCP-to-anode dist.: 5.2 mm

Laser scan:

2) **LPET:** David Brasse: read every pixel (MCP coupled to matrix of LYSO crystals)

Planacon 85022-600 (Jeff DeFazio):

Point resolution radius ~0.4 mm

Bottom MCP-to-anode dist.: **3.6 mm**

• Message: In retrospect, we at SLAC, could have chosen 8-channel NINO ASIC to readout every pixel.

2/25/20

Several large physics applications with MCP-PMTs

Endcap Panda DIRC: Photonics MCP with TOFPET electronics

Panda Endcup DIRC TDR, 2019, and Jeff DeFazio, private communication

Panda Endcap DIRC readout:

New Photonis MCP for Endcap Panda:

- MCP has 0.4 mm x 17 mm anode pixels.

- 3 rows x 100 strip configuration.
- MCP-Anode gap = 0.625 mm
- Anode strips are grounded by electronics.
- tube does not have a ground plane (Jeff DeFazio)
- Goal: TTS resolution of ~100ps; presently they got ~320 ps with negative MCP pulses.
- Problem: TOPFET ASIC was designed for positive pulses, i.e. it works well with SiPMTs. There is an effort to talk to company to provide a modification of the ASIC to work with negative MCP pulses.
- <u>Message:</u> TOPFET2 ASICS is using time-over-threshold timing, it is cheap, electronics has low mass, it is radiation hard and has low power consumption (<10mW/ch).

2/25/20

Belle-II: TOP DIRC counter waveform digitizing electronics

Work led by Gary Varner, Univ. of Hawaii, details in D. Kotchetkov et al., ArXiv:1804.10782, 2018

DIRC TOP counter principle (450mm wide x 2600 mm long):

- **IRSX** waveform digitizer: 2.7 GSa/sec, an equivalent to a cheap scope on every pixel. \mathbf{O}
- Amplifier gain: ~120x. They slowed down the risetime to have 2 samples on leading edge. \mathbf{O}
- **Message:** The total power consumption is very high: ~570 mW/channel ! \bullet

Belle-II: TOP counter SL-10 MCP-PMT present results

M. Bessner et al., Submitted to NIMA, 2019 and D. Kotchetkov et al., ArXiv:1804.10782, 2018

HPK SL-10 16 pixel MCP:

- 16 pixels (4 x 4)
- 5.3mm x 5.3mm pixel size

This MCP is capable of excellent TTS resolution:

Bench laser test TTS resolution with final IRSX electronics:

- Because of a large background, MCP gain had to be lowered to ~3x10⁵. As a result of this and other effects, the single photon timing resolution in Belle-II is presently: 80-120ps.
- Max photon rate is kept < 4 MHz/MCP. Some non-ALD coated MCPs will have to be replaced in 2020.

LHCb: TORCH TOF MCP-PMTs

N. Harnew, RICH 2018, J.S. Lapington et al., NIMA 695(2012)78, T.M. Conneely et al., JINST, May 2015 and S. Bhasin et al., to be published in NIM

Photek MCP:

- Challenge #1: Required single photon resolution: ~70 ps/photon and ~10-15ps/track. •
- Challenge #2: Expected rates at LHCb: 10-40 MHz/cm², and anode charge doses up to ~5C/cm². • Aging tests with Phase-I MCP: good up to $\sim 3C/cm^2$ only at present.
- Message #1: TOT timing with 32-channel NINO ASIC works well, although calibration is complicated. \mathbf{O}

Si detectors

SiPMTs radiation hardness is an issue for RICH detectors

Nakamura, JPS meeting, 2008, M. Calvi et al., NIMA 922(2019)243, C.Woody, EIC PID workshop, 2019, and B. Biro et al., arXiv:1809.04594, 2019

- <u>Message #1</u>: High energy protons and neutrons produce the most damage. Damage from thermal neutrons is observed only at high doses. Gammas produce comparatively lower damage.
- <u>Message #2</u>: Lower temperature can reduce noise rate caused by the neutron damage. All SiPMs, even those irradiated up to 10¹⁴ n_{eq}/cm², are "usable" at liquid nitrogen temperature. Operation for RICH detectors in single photon regime at 10¹¹n_{eq}cm⁻² and -30 °C is possible.

EIC R&D on ARICH: SiPMTs noise rate = f(temperature)

C.P. Wong et. al., NIM A 871, 13 (2017)

• Hamamatsu SiPMT 16 x 16 matrix with 3 mm x 3 mm pixel sizes; ~100ps timing is possible.

• <u>Message</u>: Low temperature clearly helps to reduce the room temperature noise.

2/25/20

ATLAS Endcap Low Gain Avalanche Diodes

H. Sadrozinski, private communication, ATLAS technical proposal, 2019, and

G. Paternoster, https://indico.cern.ch/event/803258/contributions/3582777/attachments/1963858/3265168/203-Arcidiacono-UFSDstatus.pdf

R. Arcidiacono, https://indico.cern.ch/event/803258/contributions/3582956/attachments/1963922/3265196/362 Paternoster HSTD12-2.pdf

Present design have a region of no gain: LGAD sensors, ASICs, cooling and connection package: **ATLAS UFSD Endcap:** gain layer JTE JTE gain layer FLEX cable no-gain area ~70 µm p-Si Endcan HV wire bonding Modules assembly n++ calorimeter wall plate at inner ring Electrical components Outer ring Position and time are determined ervice feedthroug & cooling lines) by amplitude-weighted centroid -Back cover LGAD 2x4 cm² using four pads Cooling/support plate 2 ASICS **Present design:** Pitch: 1.3 mm Bump bonding 12 cm < r < 60cm **Gap:** ~ 70µm Not to scale 7888 sensor modules ASIC wire bonding Fill factor: ~90%

- Bench tests: Very good timing and position resolution results using a laser ($\sigma \sim 10$'s of ps & 10's of μ m).
- Radiation damage: They reached ~3x10¹⁵ n_{eq}/cm² and 4 MGy, i.e., very close to the final goal. (1 MGy = 100 Mrads !!).
- Two ASICs, ALTIROC (ATLAS) and ETROC (CMS) under development.
- Message: There seems to be a real progress.

Periphera on-detecto electronic

Gas detectors

Gasous detectors: Timing with Micromegas

Y. Giomataris, private communication, and J. Bortfeldt et al., arXiv:1901.03355, 2019

- Pixel size: ~1cm² area
- Photocathodes: CsI or DLC (diamond-based photocathode)
- Gas: 80% Ne+10% CF₄+10% C₂H₆
- 3 mm MgF₂ window/radiator
- Cividec amp 1-2 GHz BW, and SAMPIC waveform digitizer or 20 GSa/s LeCroy scope
- CsI photocathode: ~24 ps/MIP (150 GeV/c muons), ~76 ps for single photoelectrons !! Mean number of photoelectrons with CsI: ~10 per/MIP.
- Diamond photocathode: ~40 ps/MIP with 97% det. eff.; need a factor of 3 improvement of QE.
- <u>Message:</u> Gaseous detectors are not dead yet.

Conclusions

• There has been a real progress in developing 4D LGAD detectors hoping to achieve a position resolution of 10's of µm and 10's of ps per MIP.

• Similarly photon detectors were developed providing ~100 ps per single photon with very small-pixel sizes.

• But future will tell if the promissed timing resolution, which is inherently a very sensitive analog quantity, can be achieved in large background environment and in very large detector applications. It is very challenging task.

Appendix

Maximum rate and charge dose capability

MRPC (ALICE): System MIP resolution of ~60 ps/MIP and rate capability of ~500 Hz/cm ² .	
New R&D: MIP rate up to $\sim 50 \text{ kHz/cm}^2$ with a new low resistivity glass are under study.	

 MCPs: MIP timing resolution of <10 ps/MIP with a single-pixel MCP achieved. Single photon timing resolution of ~30-100 ps/photon achieved. Endcap DIRC in Panda: expect rates up to ~1 MHz/cm² for single pe's @gain of 10⁶. TORCH at LHCb: expect rates up to ~40 MHz/cm² !! Panda R&D: anode charge dose up to ~20 C/cm² using single pe's with Photonis MCP. TORCH: The 1-st generation of Photek MCPs reached ~3-4 C/cm². The latest Hamamatsu MCPs almost reached ~20C/cm².

Diamond (TOTEM): MIP timing resolution of ~80 ps/MIP achieved.

This technology is very radiation hard.

High rate capability achieved: ~3 MHz/cm².

SiPMTs: MIP timing resolution of ~13 ps achieved in a beam test. Significant noise increase after ~10¹⁰ neutrons/cm². Cooling helps.

LGADs (ATLAS UFSD project):

MIP timing resolution of ~30 ps/MIP, and ~16 ps/MIP for tandem of three achieved. Expect rates up to ~40 MHz/cm².

Sensors & ASICs will be exposed to $3.7 \times 10^{15} n_{eq}/cm^2$ and 4.1 MGy (!!!) in ATLAS !!!! Present test results: OK up to $3 \times 10^{15} n_{eq}/cm^2$ and 4 MGy.

Micromegas (CsI): Timing resolution of ~24 ps/MIP and ~76 ps/photon achieved in a beam test.

2/25/20

Electronics for the best timing result

- Ortec 9327 Amp/CFD can reach $\sigma_{\text{Electronics}} \sim 2$ ps resolution, if one avoids TAC electronics.
- <u>DRS4</u> waveform digitizer can reach $\sigma_{\text{Electronics}} < 1$ ps for very small delay between start & stop.
- <u>20 GSa/s scope</u> with CFD algorithm can reach $\sigma_{\text{Electronics}} \sim 2 \text{ ps.}$
- <u>Message:</u> If your electronics contributes ~2 ps to the resolution, you are doing very well.

Ion feedback in new MCPs, ALD-coated, Npe=1

A. Lehmann, private communication, April 22, 2018

- Photonis XP85112 MCP-PMT performs well at a total charge of ~3x10⁶
- Hamamatsu R13266 sees an increase in the rate already at a total charge of ~1.5x10⁶.

Cross-talk in Multi-pixel MCPs

FIT group at ALICE: Modification of Planacon MCP 85012

Y.A. Melikyan on behalf of ALICE, RICH 2018, MCP modifications done by Jeff DeFazio, Photonis.

• <u>Message:</u> A modification of 64-pixel Planacon XP85012 included:

(a) reduced number of pixels from 64 to 4 (SMA connectors),

- (b) add two boards,
- (n) improved the HV ground return and
- (d) increased a distributed capacitance along MCP edges.
- Goal of FIT: Timing resolution $\sigma \sim 30$ ps/track

FIT detector concept to detects MIPs:

Panda R&D: Latest update on ringing of new 64-pixel Planacon

Albert Lehman, private communication, May 7, 2019, and Jeff DeFazio, private communication,

New features (from Jeff DeFazio) :

- New connector.
- Smaller anode-ground capacitance.
- Better ground return.
- Tube has the ground plane.
- (Jeff thinks it helps to reduce ringing).

• <u>Message:</u> Latest Photonis MCP (#9002150) has much better ringing performance.

Ringing in early version of Planacon MCP vs. MaPMT

J. Va'vra, FDIRC logbook "Beam test Focusing_DIRC_3.pdf", p.53, 2006

Scope trigger: Pilas laser

- Message: Amplitude of ringing increases with number of photons hitting MCP. Had to increase the \mathbf{O} discriminator threshold to avoid fake hits.
- H-8500 MaPMT with the same electronics was OK. \mathbf{O} 2/25/20 J. Va'vra, INSTR20.

Novosibirsk, 2020

MCPs in magnetic field

Endcap Panda: MCP charge footprint in magnetic field can be very small

J. Rieke et al, JINST 11, 2016, and Panda Endcup DIRC TDR, 2019

New Photonis MCP for Endcap Panda:

- MCP has 0.4 mm x 17 mm anode pads.
- 3 rows x 100 strip configuration.
- MCP-Anode gap = 0.625 mm
- tube does not have a ground plane

• Message: A magnetic field of only ~0.1 T will reduce the charge footprint to ~15µm !!

MCP gain in magnetic field

A. Lehman, RICH 2018, Moscow:

- ALD tubes seem to show faster gain drop in B-fields than non-ALD tubes !
- Photonis 9002108: gain drop by a factor of 2 at 1 Tesla, at 0 deg.
- Hamamatsu YH0250: gain drop by a factor of 4 at 1 Tesla, at 0 deg.
- Argonne ALD-coated MCP: gain drop by a factor of more than 10 at 1 Tesla, at 0 deg.

Ion feedback in MCP = f(B)

J. Va'vra, Log book #7, 2009

• <u>Message:</u> No increase in the ion feedback observed within my errors.

FDIRC development at SLAC

Can one do timing with low total charge ?

J. Va'vra, MCP log book #7, 2012, NIMA 629 (2011)123, and NIMA 606 (2009) 404

2 Burle old Planacon 10µm MCP-PMT 85013-501:

(4 pixels ganged together, others grounded)

Pulses from Planacon 85013-501 with HPK C5504-44 amp. with a gain of 63x :

- Low gain ~2x10⁴, vary Npe (1-100)
- Total charge: ~8x10⁵ for Npe ~40
- For Npe ~ 40 pe, we reached ~14 ps.
- For Npe ~80, one could reach ~10ps.

• <u>Message</u>: For TOF application, one can reach a good resolution even at low gain if Npe ~40-80. 2/25/20 J. Va'vra, INSTR20, Novosibirsk, 2020 46

Single pe MCP pulses, no amplifier

SLAC effort: J.Va' vra, log book #3, p.23, 2006

Burle Planacon MCP-PMT

(85013-501):

Using our simple formula:
$$\sigma_{noise} \sim 0.4 \text{ mV}$$
 $S \sim 8 \text{ mV}$ $S/N \sim 8/0.4 \sim 20$ $t_{rise time} \sim 150 \text{ ps}$ (with a better scope) $\sigma_{time} \sim t_{rise time} / (S/N) \sim 7-10 \text{ ps}$

- 10 µm MCP hole dia.
- Gain ~10⁶
- 64 pixels, pad size: 6 mm x 6 mm (ground all pads except four)
- Ganging 4 pixels together increases a capacitance.
- PiLas laser is used as a scope trigger

• That told me that one can reach a very good resolution with this MCP

A good TTS resolution even with slower electronics

SLAC effort: J.Va'vra, log book 3, p. 27, 28 & 37, 2006, and NIMA 572 (2007) 459

Planacon 85013-501 single electron pulses with Hamamastu 63x amplifier C5504-44 :

Hamamatsu C5594-44 amplifier

1.5 GHz BW, 63x gain, 2.8kV

- 10 µm MCP hole diameter
- Gain ~10⁶, Npe = 1
- 64 pixels, pad size: 6 mm x 6 mm. (single pixel used)
- $\sigma_{\text{TTS}} < \sqrt{(32^2 \sigma_{\text{Laser}}^2 \sigma_{\text{Electronics}}^2)} \sim 27 \text{ ps}$
- Philips 715 CFD, Pilas laser (635nm).
- LeCroy TDC 2248

~0.4 GHz BW, 200x gain + 6dB, 2.8kV

• One can obtain a good TTS resolution even with a slower amplifier, if one has a good S/N ratio, and one tunes CFD discrimination carefully.

MCP-to-cathode distance - a way to eliminate tail

SLAC effort: NIMA553(2005)96

MCP-to-Cathode distance ~0.85 mm

5.5

100 90 80

50

40 30

20

effic 70 el. 60

Penalty: the efficiency drops to zero half way through all edge pads. •

Pixel edge effects in MCP timing

SLAC effort: NIMA 553(2005)96-106

Scan of timing resolution on one 5mm x 5mm pixel with single photoelectrons:

- Pixel edges and corners have worse timing resolution due to charge sharing.
- In principle, it can be corrected if one has knowledge of a photon entry. But that entry point is usually not known.

LAPPD MCPs

LAPPD 8"x8" MCP detectors with strip readout

M.J. Minot et al., http://www.incomusa.com/mcp-and-lappd-documents/, 2/6/2019

LAPPD detector with strips:

Strips: Single pe pulses (LAPPD #25):

Strips: TTS resolution (LAPPD #25):

Strip cross-talk problem can be calculated, in principle: H. Grabas, LAPPD simulation study at U. of Chicago/Saclay, May 2012)

Using a simple formula:
S/N ~ 15
t _{rise time} ~850 ps
$\sigma_{time} \sim t_{rise time}$ /(S/N) ~60 ps

- Generation-I detectors: Strip line readout is now commercially available from Incom, Inc.
- For many low rate applications this is an excellent choice.

LAPPD 8"x8" MCP detectors with pixel readout

Angelico et al., NIMA 846 (2017) 75

LAPPD detector concept with capacitively coupled pixels:

Pixels: capacitive vs. direct coupling pulses:

- Generation- II detectors: (a) ceramic body, (b) capacitive coupling to external PCB board.
- This concept is still in R&D stage and detectors are not yet available.
- See appendix for more info.

2/25/20

Si detectors: High gain SiPMTs

A. Rozhnin et al., Fermilab, Talk at Picosecond timing workshop, Arlington, Oct. 5-7, 2015

Start: SiPMT, Stop: Photek-240 MCP-PMT

- SiPMT: 3x3mm²
- 6 µm holes MCP
- 3 cm-long Fused silica radiator
- No extra radiator used on MCP, only
- 8mm-thick window
- Fast amplifier on SiPMT
- DRS4 digitizer

8 GeV/c e⁻ beam (distance between two detectors: 7.12 meters)

• Test achieved $\sigma_{\text{SiPMT}} \sim 13 \text{ ps resolution per MIP.}$ $(\sigma_{\text{SiPMT}} \sim \sqrt{[14.5^2 - (8.3/\sqrt{2})^2]} \sim 13 \text{ ps})$

Timing + position + calorimeter + PIN diode

A. Ronzhin et al., Fermilab, SLAC talk, 2017

• Si-PIN diode can achieve pretty good timing resolution in a calorimeter application.

ATLAS: Low Gain Avalanche Diodes in test beam

Cartiglia et al., ArXiv:1608.08681, 2017

- Pixel size: 1.3mm x1.3mm x ~45 μm thick
- AD from CNM
- Gain ~ 20 @ 200V on AD
- Cividec 100x amp., 1-2 MHz BW, CFD
- 20 GSa/sec (50 ps bins)

 $\label{eq:time_states} \begin{array}{l} \underline{\text{Using a simple formula:}} \\ t_{\text{rise time}} \sim 400 \text{ps} \\ \text{S/N} \sim 20 \\ \sigma_{\text{time}} \sim t_{\text{rise time}} \, / (\text{S/N}) \, \sim \!\! 20 \, \text{ps} \end{array}$

• Test beam achieved: $\sigma_{time} \sim 34$ for a single sensor, and ~ 16 ps with a tandem of 3 sensors.

```
2/25/20
```

SiPMTs for RICH detectors with TOPFET2 ASIC

TTS resolution with SiPMT and TOPFET was ~100 ps:

R. Bughalo et al., Talk at IEEE/NSF, Atlanta, 2017

- SiPMT: 5x5mm²
- SiPMT: HPK S31361-3050
- 64 channel ASIC
- Low power: 5-8 mW/ch
- ps laser (405 nm)

- TOFPET ASIC was developed for Time-of-Flight Positron-Electron Tomography.
- Test achieved $\sigma_{siPMT} \sim 90-100$ ps resolution per single photon at 7.5V overvoltage.
- Lesson #??: Lower power consumption (5-8 mW/ch.)

Maximum rate and charge dose capability

J. Va'vra, https://www.slac.stanford.edu/~jjv/activity/Vavra_Invited_paper_La_Rochelle_2019.pdf

Detector	Experiment or beam test	Maximum rate	Maximum anode charge dose	Timing resolution	Ref.
MRPC presently	ALICE	~500 Hz/cm ² *** (tracks)		~60 ps/track (present)***	[4]
MRPC after upgrade	ALICE	Plan: ~50 kHz/cm ² ** (tracks)		Plan: ~20 ps/track	[4]
MCP-PMT	Beam test			$< 10 \text{ ps/track}^*$	[7,8,9]
MCP-PMT	Laser test		1 - C. O. C L.	~27 ps/photon *	[14]
MCP-PMT	PANDA Barrel test	10 MHz/cm ² * (laser)	$\sim 20 \text{ C/cm}^2$ *		[11]
MCP-PMT	Panda Endcap	~1 MHz/cm ² ** (photons)			[28]
MCP-PMT	TORCH test		$3-4 \text{ C/cm}^{2*}$	~90 ps/photon *	[27]
MCP-PMT	TORCH	10-40 MHz/cm ² ** (photons)	5 C/cm ² **	~70 ps/photon **	[24-27]
MCP-PMT	Belle-II	< 4MHz/MCP **** (photons)		80-120 ps/photon***	[23]
Low gain AD	ATLAS test	~40 MHz/cm ² ** (tracks)	1	~ 34 ps/track/single sensor *	[34,35]
Medium gain AD	Beam test			< 18 ps/track *	[39]
Si PIN diode (no gain)	Beam test (electrons)			~23 ps/32 GeV e ⁻	[8]
SiPMT (high gain)	Beam test – quartz rad.		$< 10^{10}$ neutrons/cm ²	\sim 13 ps/track *	[8]
SiPMT (high gain)	Beam test - scint. tiles		$< 10^{10}$ neutrons/cm ²	< 75 ps/track *	[41]
Diamond (no gain)	TOTEM	\sim 3 MHz/cm ² * (tracks)		~ 90 ps/track/single sensor *	[36]
Micromegas	Beam test	$\sim 100 \text{ Hz/cm}^2$ (tracks)	1	~24 ps/track *	[31,32,40]
Micromegas	Laser test	\sim 50 kHz/cm ² * (laser test)		~76 ps/photon *	[31,32,40]

Measured in a test

** Expect in the final experiment

*** Status of the present experiment