

The Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid Argon Calorimeters

INSTR20 2020

Etienne FORTIN (CPPM)

On behalf of the ATLAS Liquid Argon calorimeters group

Liquid Argon Calorimeter (LAr)

Pb(Cu,W)/LAr sampling calorimeter • \sim 180k cells \rightarrow only for main readout (100 kHz max) IIIIIIIIIIIII LAr hadronic end-cap (HEC) LAr electromagnetic end-cap (EMEC) LAr electromagnetic barrel(EMB) LAr forward (FCal) γ , e[±], jets, MET from ionisation pulse

LHC-HL

LHC / HL-LHC Plan

HL-LHC CIVIL ENGINEERING:

DEFINITION EXCAVATION / BUILDINGS

- LAr Upgrade Phase-I (Now): trigger readout upgrade
- LAr Phase-II (2025-2027): main readout upgrade

LAr Phase-1 Upgrade

LHC Run-3:

- L1 trigger bandwidth stays at 100 kHz (~20kHz for e[±])
- Avoid raise of p_T thresholds → improve background rejection → Upgrade trigger readout

70 GeV electron simulation

- 10-fold increase in granularity longitudinal + lateral segmentation
- Better digitization precision

LAr Readout Electronics

New Electronics: Front End

- Layer Sum Board
 - Higher Granularity
- Baseplane
 - #channels x 10
- LTDB
 - Digitizes Super Cell Signals at 40 MHz, 12b precision
 - Send ADC to LDPS
 - 320 Channels per board
 - Send old layer sums to legacy trigger system (backup)

(LTDB)

(LDPS)

New Electronics: Back End

LDPS

- Read Super Cell ADC @ 40 MHz
- Compute Super Cell E₊
- Identify Bunch Crossing ID of the Super Cell signal
- Send data to L1 Trigger (41 Tbps) + Monitoring
- Main board : Lar Digital Processing Blade LDPB=LArC (ATCA Carrier) + 4 LATOME(Advanced Mezzanine Card)
- System with fixed latency
 - Smaller than 1.625 μs

(LTDB)

(LDPS)

New LAr Electronics

LTDB: 124 boards

Custom ASICs: radiation-hard

LArC: 30 boards

ATCA carrier

LATOME: 116 boards

ATCA advanced mezzanine

Baseplanes & Layer Sum Boards

- Baseplanes: 6 different topologies (Barrel, End-Cap ...)
 - Nominal production done (spares production ongoing)
 - 93 out of 114 installed (~80%)
- Layer Sum boards (LSB)
 - Production completed (2456), delivered to CERN
 - FrontEnd Boards of Barrel A/C and EMEC A reinstalled, EMEC C installation just beginned

Custom ASICs

- ADC: 12b, 4 channels (80 / LTDB)
 - Tolerance established up to 10 MRad
 - 12.8k chips qualified for LTDB production
 - Tests continue to cover shelf spares
- Serializer : LOCx2 (20 / LTDB)
 - 3.2k chips qualified for LTDB production
- Optical modules: MTx/MTRx (40 / LTDB)
 - 3.2k Mtx qualified for LTDB production
 - 800 MTRx qualified for LTDB production
 - Few spares production ongoing

Front End – Lar Trigger Digitizer Board

- A total of 124 LTDB to be installed
 - 150 PCB produced
 - 70 Barrel LTDB produced and tested
 - 12 End Cap LTDB produced and 2 tested
 - Production & Test of remaining LTDB ongoing
 - 33 LTDB already installed, commissioning ongoing
 - Totality expected at CERN in Spring 2020

Back End – LAr Carrier

- Carrier : ATCA back end motherboard
 - Hosts 4 Advanced Mezzanine Card (AMC): LATOME
 - Drives Control and Monitoring Data communications
- 34 boards produced and tested (4 spares)
- Power management with dedicated card & firmware: **IPMC**

Back End – LATOME

8 μPods: Rx 5.12 Gbps (x48), Tx 11.2 Gbps (x48)

- LATOME : computes Super Cells E_T and Bunch Crossing ID from ADC, corrects baseline
 - All 150 boards produced (34 spares), 145 already qualified
 - Blades validation tests LArC+LATOME ongoing
 - Firmware under validation
 - Integration tests and commissioning on the real system has started

Installation Status

- Baseplane exchanged
- Re-cabled for commissioning
- FEB Boards reinserted
- LTDB installed, in commissioning
- Installation started in winter 2019
- End: 2nd half of 2020
- Access depending on the detector opening

Felix (control / monitoring /DAQ)

Conclusion

- In 2021, the Run-3 of LHC will start with an increase instantaneous luminosity
- The calorimeters are not changed, only the electronics
 - keep providing excellent performances if readout is sufficient
 - True also for the HL-LHC!
- Phase-I (now): electronics is upgraded for the trigger readout
 - Improve background rejection capabilites + Energy resolution at first level of trigger
- Production of all the boards has started and will complete in Spring 2020
- Installation & Commissioning is ongoing